

Department of Computer Science and Engineering

Subject Name:Semantic web and social networks

Year and Semester:III-I

Regulations:R18

Syllabus

MODULE I: World Wide Web

Web Intelligence - Thinking and Intelligent Web Applications, The Information Age, The
World Wide Web, Limitations of today’s Web, The Next Generation Web, Machine
Intelligence, Artificial Intelligence.

Web Description - Ontology, Inference Engines, Software Agents, Berners-Lee www,
Semantic Road Map, Logic on the semantic Web.

MODULE II:Knowledge Representation for the Semantic Web

Ontology - Ontologies and their role in the semantic web, Ontologies Languages for the
Semantic Web -Resource Description Framework (RDF) / RDF Schema.

Web Languages - Ontology Web Language (OWL), UML, XML, XML Schema.

MODULE III: Ontology Engineering

Ontology Development - Ontology Engineering, constructing Ontology, Ontology
Development Tools, Ontology

Ontology Sharing and Merging - Ontology Sharing and Merging, Ontology Libraries and
Ontology mapping, Logic, Rule and Inference Engines.

MODULE IV: Semantic Web Applications, Services and Technology

Semantic Web Services - Semantic Web applications and services, Semantic Search, e-
learning

Semantic Web Applications - Semantic Bioinformatics, Knowledge Base, XML Based Web
Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology,
Web Search Agents and Semantic Methods

 MODULE V:Social Network Analysis and Semantic Web

Social Network Analysis - What is social Networks analysis, development of the social
networks analysis, Electronic Sources for Network Analysis - Electronic Discussion
networks.

Semantic Web - Blogs and Online Communities, Web Based Networks, Building Semantic
Web Applications with social network features.

TEXT BOOKS: 1. Berners Lee, Gödel and Turing, “Thinking on the web”, Wiley
interscience, 2008. 150 2.Peter Mika, “.Social Networks and the Semantic Web”, Springer,
2007.

 REFERENCES: 1. J.Davies, R.Studer, P.Warren, Johri. Wiley & Sons, “Semantic Web
Technologies, Trends and Research in Ontology Based Systems” 2. Liyang Lu Chapman and
Hall, “ Semantic Web and Semantic Web Services”,

MODULE I

World Wide Web

Web Intelligence:Today, the world is experiencing the excitement of an historic change. We
find ourselves in the midst of an information revolution, the result of rapid advances in
technology built in great part upon the shoulders of three pivotal pioneers: Kurt Gödel, Alan
Turing, and Tim Berners-Lee. Through their contributions, we are witnessing the remarkable
refashioning of the Information Age, which began in the 1950s, into the Information
Revolution as the World Wide Web evolves into a resource with intelligent capabilities.

Web intelligence is an issue of philosophy as much as application. It has
beensuggested that the next generation of Web architecture, the Semantic Web, createsan
Artificial Intelligence (AI) application that will make Web content meaningfulto computers
thereby unleashing a revolution of new abilities. More realistically,however, the Semantic
Web will add semantics to the Web along with somelimited AI capabilities to produce a more
useful Web. The balance betweengreater logic expressive power and solvable computer
reasoning complexity isstill being questioned and evaluated.

Alan Turing was one of the great thinkers of the twentieth century, and
hiscontributions in the area of machine intelligence were seminal. This chapterprovides an
overview of Turing’s contributions and discusses some of the keyideas emanating from his
work. In addition, we engage in a discussion of themeaning of machine intelligence and offer
some perspective on how makingcontent on the Web machine processible will contribute
toward Web intelligence.

THINKING AND INTELLIGENT WEB APPLICATIONS

When the philosopher Rene Descartes proclaimed his famous observation
“Cogito,ergo sum,” he demonstrated the power of thought at the most basic level by
derivingan important fact (i.e., the reality of his own existence) from the act of thinkingand
self-awareness.

Today, the term “thinking” is frequently loosely defined and ambiguouslyapplied. For
that reason, it is important to provide a brief preview of whatwe mean by the term in the
context of intelligent applications on the WorldWide Web.

In general, thinking can be a complex process that uses concepts, their
interrelationships,and inference or deduction, to produce new knowledge. However,thinking
is often used to describe such disparate acts as memory recall, arithmeticcalculations, creating
stories, decision making, puzzle solving, and so on.

Some aspects of the concept of thinking can be inferred by recognizing thatan

individual can be identified as intelligent if they have accurate memory recall,the ability to
apply valid and correct logic, and the capability to expand theirknowledge through learning
and deduction. Ultimately, self-awareness and consciousnessare important if not central
aspects of human intelligence, but thesecharacteristics prove much more difficult to analyze
or emulate than other, moredirect indicators of intelligence.

The term “intelligence” can be applied to nonhuman entities as we do in thefield of

Artificial Intelligence (AI). But frequently we mean something somewhatdifferent than in the
case of human intelligence. For example, while one mightbe quite impressed with the
intelligence of a child prodigy who can performdifficult arithmetic calculations quickly and
accurately, a computer that couldperform the same calculations faster and with greater
accuracy would not beconsidered to be particularly intelligent. An individual who has rapid
memoryrecall and who has accumulated sufficient amounts of information to consistentlywin
games such as Scrabble, or Trivial Pursuit, might also be considered to bevery intelligent;
while a computer storing much greater quantities of accessiblefactual information would not.

It is recognized that human thinking involves complicated interactions withinthe
biological components of the brain, and that the process of learning is alsoan important
element of human intelligence. Increasingly, software applicationsperform tasks that are
sufficiently complex and human-like that the term intelligentmay be appropriate. Whereas AI
can be seen as the science of machines that behave intelligently (or simulate intelligent
behavior), the concept of intelligentapplications entails the efforts to take advantage of AI
technologies to enhanceapplications and make them act in more intelligent ways.

THE INFORMATION AGE

We are accustomed to living in a world that is rapidly changing. This is truein all

aspects of our society and culture, but is especially true in the field ofinformation technology.
Most are aware of the rapid advances in computer andinformation technology as
exemplified in “Moore’s law,” the observation madein 1965 by Gordon Moore, co-founder of
Intel that the number of componentson integrated circuits had doubled every 18 months.

As a result, it is common to observe such rapid change and comment simplythat
“things change.” But, even accepting the reality of rapid change, when canwe assess that the
change has actually improved human productivity? And whattypes of change can produce
transformation on a global scale?

To gain an historical perspective of global change, take a brief look back.Over the
millennia, mankind has experienced two global revolutionary changes: the Agricultural
Revolution and the Industrial Revolution. Each produced overa 100-fold factor of
improvement in the access to basic human resources andsubsequently freed individuals to
pursue higher level cultural and social goals.In addition, over the past half century, many
have been pondering the possibilitythat the technological inventions of the Information Age
may in fact be of suchscope as to represent a third revolutionary change: the Information
Revolution.

Should the rapidly changing world of the Information Age be considered aglobal
revolutionary change on the scale of these earlier revolutions? In orderto address this issue
we must compare it with the changes associated with theAgricultural Revolution, which
began around 8000 B.C. and continued through around 1700 A.D., and the Industrial
Revolution, which began around 1700 andis still continuing to spread across the
underdeveloped world even today.

Ten thousand years ago, humans lived in migratory groups and with theaid of flexible,
rapidly evolving cultures, these loosely organized groups of“hunter–gatherers” were able to
adapt to virtually all the climate zones and environmentalniches on the planet, from the
Arctic to temperate zones to the tropics.They fed themselves by hunting, herding, fishing, and
foraging. The essence ofhunting and gathering economies was to exploit many resources
lightly ratherthan to depend heavily on only a few. Small, mobile human populations

subsistedon whatever resources were available within their territory. In such

small,continuously moving communities, there was little opportunity for economic orother
kinds of specialization to develop. What one person knew and believed,the entire group
tended to know and believe. Life was communal; cultural andtechnical knowledge and skills
were widely diffused.

However, a major and dramatic turning point in human social developmentoccurred
when humans discovered the utility of agriculture. Agriculture resultedin living permanently
in one place. Living in one spot permanently means exploitinga relatively small amount of
land very intensively and over a long periodof time.

To survive, agriculturalists had to collect all their food for the year at one ortwo
harvest times, rather than gathering year round. Nothing, therefore, couldbe allowed to
interrupt the harvest. This is due to a very narrow window ofopportunity for planting and
cultivating. Under this kind of pressure, agriculturalcommunities became more time-
conscious. Agriculturalists also had to store theproduce of their fields for the rest of the year,
protect it from moisture, vermin,and thieves, and learn to distribute supplies so the
community could survive andstill have seed for next year’s planting. These conditions
created a new kind oflife style.

While a hunter–gather acquired resources from 100 acres to produce an adequatefood
supply, a single farmer needed only 1 acre of land to produce theequivalent amount of food.
It was this 100-fold improvement in land managementthat fueled the agricultural revolution.
It not only enabled far more efficient foodproduction, but also provided food resources well
above the needs of subsistence,resulting in a new era built on trade.

The Agricultural Revolution crept slowly across villages and regions, introducingland
cultivation and a new way of life. During the long millennia thatthis revolution progressed,
the world population was divided into two competitivecategories: primitive and civilized. The
primitive tribes continued in themode of hunting–gathering while the civilized communities
worked the land.The civilized communities produced foodstuffs for their own use with a
surplusto allow for trade.

Because farmers consumed what they produced directly and traded their
surpluslocally, there was a close relationship between production and consumption.However,
as trade developed the Agricultural Revolution encouraged the construction of the roads that
facilitated the exchange of specialized produce onan expanding scale until it eventually
become global.

This evolutionary transition to an agricultural basis for society was still
incompletewhen, by the end of the seventeenth century, the Industrial Revolutionunleashed a
new global revolutionary force. Societies, up until this period, hadused human and animal
muscle to provide the energy necessary to run theeconomy. As late as the French revolution,
millions of horses and oxen providedthe physical force that supported the European
economy.

Where a single farmer and his horse had worked a farm, during the
IndustrialRevolution, workers were able to use a single steam engine that produced 100times
the horsepower. Consequently, the Industrial Revolution placed a 100-foldincrease of
mechanical power into the hands of the laborer. It resulted in thefalling cost of labor and this
fueled the economic growth of the period. Thenew industrialization process moved rapidly
over Europe and across the othercontinents. It utilized flowing water, wood, coal, oil, and gas
to generate energythat in turn produced an abundance of food and material goods.

In contrast to the agricultural cycle of planting and harvesting, the industrialsociety

followed the continuous linear timing of machines to build inventoryand maintain stored
goods. This enabled consumers to be far removed from theproducer. The industrialization
process, therefore, broke down the close relationshipbetween local production and
consumption. The result was a stockpiling ofresources at strategic locations along the
distribution path. Again this revolutionarychange also stimulated the intellectual growth of
the society in order to meetthe skill requirements for the workers.

The Industrial Revolution was defined by the application of power-drivenmachinery
to manufacturing. It was not until 1873 that a dynamo capable ofprolonged operation was
developed. Through the nineteenth century the use ofelectric power was limited by small
productive capacity, short transmission lines,and high cost. The coming of the railroads
greatly facilitated the industrializationprocess and the building of transcontinental railroads
mimicked the early growthof roads during the beginning of the Agricultural Revolution.

The Industrial Revolution became characterized by six basic
characteristics:Standardization: mass production of identical parts. Concentration: work
andenergy maintained locally. Centralization: authoritative leadership. Specialization:division
of labor. Synchronization: work at the pace of machines. Maximization:strategic planning.

One important development was the construction of the railroads that facilitatedthe
exchange of raw materials into finished products on a global scale.

The 1950s—the decade that introduced the computer—began the latest historicturning
point, the Information Age. However, it did not approach its full potentialtoward reducing
information transaction costs until the computer was networkedfor global communications
beginning in the 1990s with the growth of the Internet.

 THE WORLD WIDE WEB

How is the World Wide Web managing knowledge and empowering the
InformationRevolution? Does rapid change and improved information productivityrequire
more intelligent Web capabilities? What technologies offer the best opportunitiesfor
sustained powerful change? Let us explore these questions by brieflyevaluating the
development and limitations of today’s Web technology.

The history of the Web extends back more than 40 years. Looking back, wecan find
early signs of network architecture in the 1960s. The RAND Corporationbegan research
sponsored by the U.S. Air Force to determine how to developrobust, distributed
communication networks for military command and controlthat could survive and function in
the event of a nuclear attack.

This initial study led to the development of the Advanced Research ProgramsAgency
Network (ARPANET) an agency of the U. S. Department of Defense. Inaddition to
robustness, it promoted the sharing of supercomputers among scientificresearchers in the
United States. ARPANET originally consisted of four nodes inthe western U.S. (the
University of California at Los Angeles, SRI of Stanford,California, the University of
California at Santa Barbara, and the University ofUtah) connected in a system that was to
become the precursor to the Internet.

The ARPANET was a success right from the very beginning. Over thosefirst few
years, the network developed and expanded as new sites (nodes) wereadded, and as new
capabilities and features were introduced, such as softwareand protocols to facilitate email
and file transfers. Although the ARPANET wasoriginally designed to allow scientists to
share data and access remote computers,email quickly became the most popular application.

The ARPANET became ahigh-speed digital post office as people used it to

collaborate on research projects.It was a distributed system of “many-to-many” connections.
Transmission Control Protocol/Internet Protocol (TCP/IP), a suite of

networkcommunications protocols used to connect hosts on the Internet was developedto
connect separate networks into a “network of networks” (e.g., the Internet).These protocols
specified the framework for a few basic services that everyonewould need (file transfer,
electronic mail, and remote logon) across a very largenumber of client and server systems.
Several computers linked in a local networkcan use TCP/IP (along with other protocols)
within the local network just asthey can use the protocols to provide services throughout the
Internet.

The IPcomponent provides routing from the local to the enterprise network, then toregional
networks, and finally to the global Internet. Socket is the name for thepackage of subroutines
that provide access to TCP/IP.

The mid-1980s marked a boom in the personal computer and
superminicomputerindustries. The combination of inexpensive desktop machines and
powerful,network-ready servers allowed many companies to join the Internet for thefirst
time.

Corporations began to use the Internet to communicate with each other andwith their
customers. By 1990, the ARPANET was decommissioned, leaving onlythe vast network-of-
networks called the Internet with over 300,000 hosts.

The stage was set for the final step to move beyond the Internet, as threemajor events
and forces converged, accelerating the development of informationtechnology. These three
events were the introduction of the World WideWeb, the widespread availability of the
graphical browser, and the unleashing ofcommercialization.

In startling contrast, AOL, CompuServe, and Microsoft were investing fortunesin
proprietary networks that offered mostly duplicated and limited amounts ofinformation to the
public, but for a fee. Tim Berners-Lee on the other hand wasdesigning a cheap, efficient, and
simple way for universal access to great storesof information for free.

In 1991, Berners-Lee, working at European Particle Physics Laboratory ofthe
European Organization for Nuclear Research, Conseil European pour laRecherché
Nucl´eaire, (CERN) in Switzerland, introduced the concept of theWorld Wide Web.

The Web combined words, pictures, and sounds on Internet pages and
programmerssaw the potential for publishing information in a way that could be aseasy as
using a word processor, but with the richness of multimedia.

Berners-Lee and his collaborators laid the groundwork for the open standardsof the
Web. Their efforts included the Hypertext Transfer Protocol (HTTP) linkingWeb documents,
the Hypertext Markup Language (HTML) for formatting Webdocuments, and the Universal
Resource Locator (URL) system for addressingWeb documents.

Today, we reach the Web through commercial browsers, such as, InternetExplorer or
Netscape Navigator. These browsers are powerful applications thatread the markup languages
of the Web display their contents and collect data.

The primary language for formatting Web pages is HTML. With HTML theauthor
describes what a page should look like, what types of fonts to use, whatcolor the text should
be, where paragraph marks come, and many more aspectsof the document. All HTML
documents are created by using tags. Tags havebeginning and ending identifiers to
communicate to the browser the beginningand ending text formatted by the tag in question.

In 1993, Marc Andreessen and a group of student programmers at NCSA(the National

Center for Supercomputing Applications located on the campusof University of Illinois at
Urbana Champaign) developed a graphical browserfor the World Wide Web called Mosaic,
which he later reinvented commerciallyas Netscape Navigator. The graphical browser greatly
stimulated Webdevelopment.

Soon studies of Web traffic began to show signs that all Web sites were
not“equidistant.” That is, some sites were acting as hubs and garnishing a dominantshare of
the “through” traffic. In addition, some Web sites acted as prominentsources of primary
content, and became authorities on the topic, while othersites, resembled high-quality guides
acted as focused hub, directing users torecommended sites. By 1994, the W3C was founded
under the leadership of TimBerners-Lee to develop standards for the Web.

LIMITATIONS OF TODAY’S WEB

Over the past several decades, the Web has changed from a distributed, high
reliability,open system, to a Web dominated by portals, such as Yahoo, Google, AOL, and
MSN, which control much of the traffic. While the W3C developedopen Web standards,
vendors have been customizing their applications for efficientbusiness logic processing
through their proprietary servers and applications.

By the year 2000, the introduction of Web Services led to a dichotomy ofMicrosoft’s
Windows (.NET) and Sun’s Java (J2EE) frameworks within theserver community
infrastructure. As a result, the Web moved strongly towardbecoming a decentralized network
with highly critical hubs. The extensibleMarkup Language (XML) was developed as a
markup language based onthe principles and rules of Standard Generalized Markup Language
(SGML)and uses tags that are not predefined. This gives XML great flexibility,
andextensibility. The XML remains the interoperable bridge for exchanging databetween
J2EE and .NET, and as a result XML is an essential support for bothWeb Services’
frameworks.

Nevertheless, the problem with performing intelligent tasks, such as automatedWeb
Services, is that they first require human assistance, and secondthat they must rely on the
interoperation and inefficient exchange of the twocompeting proprietary server frameworks
to successfully communicate complexbusiness logic.

The Web is still based on HTML, which describes how information is to bedisplayed
and laid out on a Web page for humans to read. In effect, the Webhas developed as a medium
for display of information directly to humans; therehas been no real emphasis on establishing
the capability for machine understandingand processing of web-based information. HTML is
not capable of beingdirectly exploited by information retrieval techniques; hence processing
of Webinformation is largely restricted to manual keywords searches.

Because the World Wide Web has its origin in the idea of hypertext, theWeb is
focused on textual data enriched by illustrative insertions of audiovisualmaterials. The status
quo paradigm of the Web is centered on the client–serverinteraction, which is a
fundamentally asymmetric relationship between providersinserting content onto the Web
hypertext (the server) and users who essentiallyread texts or provide answers to questions by
filling out forms (the clients).

Today, the development complex networks of meaningful content remainsdifficult.
Web browsers are restricted to accessing existing information in a standard form. In addition,
some of today’s basic Web limitations include search,database support, interoperable

applications, intelligent business logic, automation,security, and trust. As a result, the

Information Revolution awaits the nextbreak-through to fully open the information flow.

THE NEXT GENERATION WEB

A new Web architecture called the Semantic Web offers users the ability to workon
shared knowledge by constructing new meaningful representations on theWeb. Semantic
Web research has developed from the traditions of AI and ontologylanguages and offers
automated processing through machine-understandablemetadata.

Semantic Web agents could utilize metadata, ontology’s, and logic to carry outits
tasks. Agents are pieces of software that work autonomously and proactivelyon the Web to
perform certain tasks. In most cases, agents will simply collect andorganize information.
Agents on the Semantic Web will receive some tasks to performand seek information from
Web resources, while communicating with otherWeb agents, in order to fulfill its task.

MACHINE INTELLIGENCE

 Machine intelligence is associated with Machine Learning, Computational
Intelligence,Soft-Computing, and Artificial Intelligence. Although these terms areoften used
interchangeably, they are actually different branches of study.

For example, Artificial Intelligence involves symbolic computation (i.e.,the
mathematical transformation of symbolic expressions, using computeralgorithms), while
Soft-Computing (i.e., techniques in computer scienceand in artificial intelligence, such as
Fuzzy logic, Neural networks, andProbabilistic reasoning, that resemble human reasoning
more closely thantraditional techniques) involves intensive numerical computation. The
followingsub branches of machine intelligence have particular relevance to the SemanticWeb
and the idea Web intelligence: computational complexity, descriptive logic,ontology,
inference, and software agents.

Although symbolic AI is currently built and incorporated into Semantic Webdata
representation, there is no doubt that software tool developers will eventuallyincorporate the
soft-computing paradigm as well. The benefit of such a stepwill be the creation of adaptive
software. This would imply that soft-computingapplications will have the ability to adapt to
changing environments and input.

While the Semantic Web is under development, concepts surrounding
machineintelligence will continue to evolve. The extent of the usefulness of the
SemanticWeb will be tested in various ways, but the controversy involving the meaningof
machine intelligence will undoubtedly not end in the foreseeable future.

In the following sections, topics related to semantic networks and descriptionlogic,
will be discussed and then each of the key machine-intelligence areas identifiedabove will be
addressed starting with computational complexity, followedby knowledge representation,
Ontology, inference engines, and software agents.

Alan Turing, while acting as the leading cryptography expert to break the
Germancodes during the Second World War, formulated the ideas that emerged after the war
as Intelligent Machinery, and are now referred to as AI. Key to this field ofstudy is the
definition of what is meant by the terms “thinking” and “intelligence.”

Thinking is often ambiguously defined, but generally can be applied to acomplex
processes that uses concepts, their interrelationships, and inference toproduce new
knowledge. We can extend the concept of thinking and identify anintelligent individual as
one who is capable of accurate memory recall or able toapply logic to extend knowledge.

It is possible to extend the description of intelligence to nonhuman entities aswell,

such as in AI. But we frequently mean something different than in the caseof human
intelligence. For example, while one might be quite impressed with theintelligence of a child
prodigy who can perform difficult arithmetic calculationsquickly and accurately, a computer
that could perform the same calculationsfaster and with greater accuracy would not be
considered intelligent.

While it is still not possible to resolve controversial differences of opinion overthe
nature of human intelligence, it is possible to recognize certain attributes thatmost would
agree reflect the concept. These include such elements as: the abilityto learn; the ability to
assimilate; the ability to organize and process information;and the ability to apply knowledge
to solve complex problems. By extension then,many of these attributes of human intelligence
can be traced into the various areasof research in the field of artificial intelligence. Artificial
intelligence addressesthe basic questions of what it means for a machine to have intelligence.

In 1947, shortly after the end of World War II, English mathematician AlanTuring
first started to seriously explore the idea of intelligent machines. By1956, John McCarthy of
MIT coined the term Artificial Intelligence, and bythe late 1950s, there were many
researchers in AI, most basing their work onprogramming computers. Eventually, AI became
more than a branch of science:it expanded far beyond mathematics and computer science into
fields such asphilosophy, psychology, and biology.

ARTIFICIAL INTELLIGENCE

How far is AI from reaching human-level intelligence? Some have suggested
thathuman-level intelligence can be achieved by writing large numbers of programsand
assembling vast databases of facts in the languages used for expressingknowledge. However,
most AI researchers believe that new fundamental ideasare required before true intelligence
can be approached.

There are two main lines of AI research. One is biological, based on theidea that since
humans are intelligent, AI should study humans and imitate thepsychology or physiology of
human intelligence. The other is phenomenological,based on studying and formalizing
common sense facts about the world and theproblems that the world presents to the
achievement of goals thereby providingfunctionality that, in humans, would be considered
intelligent behavior, even ifthe approach used is quite different from what would be found in
a human.

Today, AI still means different things to different people. Some confusionarises
because the word intelligence is so ill-defined. Artificial intelligence issometimes described
in two ways: strong AI and weak AI. Strong AI asserts thatcomputers can be made to think
on a level (at least) equal to humans. Weak AIsimply holds that some thinking-like features
can be added to computers to makethem more useful tools. Examples of Weak AI abound:
expert systems, drive by-wire cars, smart browsers, and speech recognition software. These
weak AIcomponents may, when combined, begin to approach some aspects of strong AI.

As participants of the Information Revolution, we could ask by extension,“What is
Web intelligence?” For the most part, the World Wide Web can be consideredto be a massive
information system with interconnected databases andremote applications providing various
services. While these services are becomingmore and more user oriented, the concept of
smart or intelligent applicationsand services on the Web is still in its infancy.

A classic example of an AI application that many would consider intelligent insome
form is computer chess. Over the years, computer chess-playing softwarehas received

considerable attention, and such programs are a commercial successfor home PCs or

on the Web. In addition, most are aware of the highly visiblecontest between IBMs Deep
Blue Supercomputer and the reigning World ChessChampion, Garry Kasparov in May 1997.

Millions of chess and computing fansobserved this event in real-time where, in a
dramatic sixth game victory, DeepBlue beat Kasparov. This was the first time a computer has
won a match with acurrent world champion under tournament conditions.

Computer chess programs generally make use of standardized openingsequences, and
end game databases as a knowledge base to simplify these phasesof the game. For the middle
game, they examine large trees and perform deepsearches with pruning to eliminate branches
that are evaluated as clearly inferiorand to select the most highly favourable move.

Web Description:

ONTOLOGY

If a program wants to compare conceptual information across two knowledgebases on
the Web, it has to know when any two given terms are being used tomean the same thing.
Ideally, the program must have a way to discover commonmeanings for whatever knowledge
bases it encounters. A solution to this problemis provided by the Semantic Web in the form
of collections of information calledontologies. Artificial Intelligence and Web researchers use
the term ontology asa document that defines the relations among terms. A typical ontology
for theWeb uses taxonomy and a set of inference rules.

The taxonomy defines classes of objects and relations among them.
Classes,subclasses, and relations among entities are important tools. We can express alarge
number of relations among entities by assigning properties to classes andallowing subclasses
to inherit such properties.

Inference rules in ontologies may express rules for manipulating
information.Inference rules may express the rule: “If a city code is associated with a
statecode, and an address uses that city code, then that address has the associatedstate code.”
A program could then readily deduce, for example, that a CornellUniversity address, being in
Ithaca, must be in New York State, which is in theUnited States, and therefore should be
formatted to U.S. standards.

The real power of the Semantic Web will be realized when people create
manyprograms that collect Web content from diverse sources, automatically processthe
information, and exchange the results. The effectiveness of software agentswill increase
exponentially as more machine-readable Web content and automatedservices become
available. The Semantic Web promotes this synergy: even agentsthat were not expressly
designed to work together can transfer semantic data.

INFERENCE ENGINES

Inference engines are intended to derive answers from a knowledge base. Theyare at
the core of the expert systems that provide a methodology for reasoningabout the information
in the knowledge base, and for formulating conclusions.Inference engines process knowledge
available in the Semantic Web. They deducenew knowledge from previously established
knowledge.

An inference engine controls overall execution of a set of rules. It searchesthrough a
knowledge base, attempting to pattern-match facts or knowledge presentin memory to the
antecedents of rules. If a rule’s antecedent is satisfied, the ruleis ready to fire and is placed in

the agenda. When a rule is ready to fire it meansthat since the antecedent is satisfied,

the consequent can be executed.Salience is a mechanism used by some expert systems to add
a proceduralaspect to rule inferencing. Certain rules may be given a higher salience
thanothers, which means that when the inference engine is searching for rules to fire,it places
those with a higher salience at the top of the agenda.

SOFTWARE AGENTS

An intelligent agent is a computer system that is situated in some environment,and
that is capable of autonomous action and learning in order to meet its designobjectives.
Agents have the following characteristics: they are reactive—theyperceive their environment,
and respond; proactive—they exhibit goal-directedbehavior; and social—they interact with
other agents.

Real-time intelligent agent technology offers a powerful Web tool. Agents areable to
act without the intervention of humans or other systems; they have controlboth over their own
internal state and their behavior. Normally, an agent willhave a repertoire of actions available
to it. So that in complexity domains, agentsmust be prepared for the possibility of failure.
This situation is called nondeterministic.Its set of possible actions represents the agent’s
capability to modifyits environments. Similarly, the action “purchase a house” will fail if
insufficientfunds area available to do so. Actions therefore have preconditions associatedwith
them, which define the possible situations in which they can be applied.

The key problem facing an agent is that of deciding which of its actions itshould
perform to satisfy its design objectives. Agent architectures are reallysoftware architectures
for decision-making systems that are embedded in anenvironment. The complexity of the
decision-making process can be affectedby a number of different environmental choices:
accessible versus inaccessible,deterministic versus nondeterministic, episodic versus
nonepisodic, static versusdynamic, and discrete versus continuous.

The most complex general class of environments consists of those that
areinaccessible, nondeterministic, no episodic, dynamic, and continuous. For theSemantic
Web, providing sufficient expressive power for agents to interact successfullyis essential.

 BERNERS-LEE: WHAT IS SOLVABLEON THE WEB?

When Tim Berners-Lee was developing the key elements of the World Wide Web,he
showed great insight in providing Hypertext Markup Language (HTML) as asimple easy-to-
use Web development language. As a result, it was rapidly andwidely adopted. To produce
Web information required skills that could be learnedwith a high school level education.
Consequently, personal computing mergedwith global networking to produce the World
Wide Web.

The continuing evolution of the Web into a resource with intelligent
features,however, presents many new challenges. The solution of the World Wide
WebConsortium (W3C) is to provide a new Web architecture that uses additional layersof
markup languages that can directly apply logic. However, the addition ofontology’s, logic,
and rule systems for markup languages means consideration ofextremely difficult mathematic
and logic consequences, such as paradox, recursion,undesirability, and computational
complexity on a global scale. Therefore,it is important to find the correct balance between
achieving powerful reasoningwith reasonable complexity on the Web. This balance will
decide what is solvableon the Web in terms of application logic.

THE WORLD WIDE WEB
By 1991, three major events converged to accelerate the development of the

InformationRevolution. These three events were the introduction of the World WideWeb, the
widespread availability of the graphical browser, and the unleashing ofcommercialization on
the Internet. The essential power of the World Wide Webturned out to be its universality
though the use of HTML. The concept providedthe ability to combine words, pictures, and
sounds (i.e., to provide multimediacontent) on Internet pages. This excited many computer
programmers who sawthe potential for publishing information on the Internet with the ease of
using aword processor, but with the richness of multimedia forms.

Berners-Lee and his collaborators laid the groundwork for the open standardsof the
Web. Their efforts included inventing and refining the Hypertext TransferProtocol (HTTP)
for linking Web documents, the HTML for formatting Webdocuments and the Universal
Resource Locator (URL) system for addressingWeb documents.

Hypertext Markup Language is the primary language for formatting Webpages. With
HTML, the author describes what a page should look like, whattypes of fonts to use, what
color text should be, where paragraphs begin, andmany other attributes of the
document.Hypertext Transfer Protocol

Hypertext Transfer Protocol is the network protocol used to deliver files anddata on
the Web including: HTML files, image files, query results, or anythingelse. Usually, HTTP
takes place through TCP/IP sockets. Socket is the term forthe package of subroutines that
provide an access path for data transfer throughthe network.
Like most network protocols, HTTP uses the client–server model: An HTTPclient opens a
connection and sends a request message to an HTTP server; theserver then returns a response
message, usually containing the resource that wasrequested. After delivering the response, the
server closes the connection.

A simple HTTP exchange to retrieve the file at the URL, first opens a socketto the
host www.somehost.com, at port 80 (the default) and then, sends followingthrough the
socket:

GET/path/file.html HTTP/1.0
From: someuser@somehost.com
User-Agent: HTTPTool/1.0

The server responds with the HTTP protocol file followed by the HTML “hello
world” file with the following:
HTTP/1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/html
Content-Length: 1354

<html>
<body>
Hello World
</body>
</html>

This simple process has proven to be not only easy and straightforward, buthighly successful
as well.

Bridging Web Services

While the W3C continually develops open Web standards, vendors have
beencustomizing their applications for efficient business logic processing throughtheir
proprietary server applications. For example, Web Services communicatethrough open
standards including Simple Object Access Protocol (SOAP) and Web Service Description
Language (WSDL), but then the business logic is executedthrough server pages designed for
specialized server frameworks (eitherJava 2 Platform Enterprise Edition (J2EE) or Microsoft
.NET).

Simple Object Access Protocol (SOAP) is an implementation of XML thatrepresents
one common set of rules about how data and commands are representedand extended. It
consists of three parts: an envelope (a framework for describingwhat is in a message and how
to process it), a set of encoding rules (for expressinginstances of application-defined data
types), and a convention for representingremote procedure calls and responses. The SOAP
messages are fundamentallyone-way transmissions from a sender to a receiver using HTTP
binding. SimpleObject Access Protocol describes commands and parameters that can be
passedbetween browsers and Web Services for both J2EE and .NET platforms.

Web Services Description Language (WSDL) describes networked XML-
basedservices. It provides a way for service providers to describe the format of requeststo
their systems regardless of the underlying protocol or encoding. It is a part ofthe effort of
Universal Discovery and Description Identification (UDDI) initiativeto provide directories
and descriptions of such on-line services for electronicbusiness.

Limits of Today’s Web

The Web has changed from its original structure of a distributed, high-reliability,open
system without a superimposed logic or metadata. Today, the basic informationis still
displayed as a distributed open system, but the development ofportals, such as, Yahoo,
Google AOL, and MSN has focused Web entry and ledto controlling traffic to partisan sites.
In addition, business logic has migratedprimarily into two segregated server frameworks:
active server pages and java
server pages. The result has produced a decentralized Web system with criticalproprietary
portal-centric nodes and frameworks.

In the future, we can expect significant improvements, such as increased
averagebandwidth, the use of open standards to facilitate advanced markup languages,the
application of metadata, and the use of inference search.

The paradigm of the Web is centered on the client–server interaction, which isa
fundamentally asymmetric relationship between providers, who insert contentinto the Web
hypertext (server) and users who essentially read texts or provideanswers to questions by
filling out forms (clients). The hyperlinks of the Webrepresent structures of meaning that
transcend the meaning represented by individualtexts. At present, these Web structures of
meaning lack longevity and canonly be blindly used, for example by search engines, which at
best optimizenavigation by taking into account the statistical behavior of Web users.

In effect, the Web has developed as a medium for humans without a focus ondata that
could be processed automatically. Hypertext Markup Language is notcapable of being

directly exploited by information retrieval techniques; hence theWeb is restricted to

manual keyword searches.
The problem at present is that there is no way to construct complex networksof

meaningful relations between Web contents. In fact, the providers have noinfluence on the
links to the contents they provide and the users have no impacton the available access
structures to the content. As a result, some of today’sbasic Web limitations include search,
database support, interoperable applications,intelligent business logic, automation, security,
and trust.An important framework for creating meaningful Web links can be providedby the
Semantic Web: the automated creation of links between machine understandablemetadata.
Such semantic linking will not be restricted to the useof specifically prepared metadata sets,
but will exploit the meaningful structure ofthe Web itself in order to provide a content-based
semantic access to information.

THE SEMANTIC WEB ROADMAP

The inventor of the World Wide Web, Tim Berners-Lee, and his W3C team workto
develop, extends, and standardizes the Web’s markup languages and tools. Inaddition, what
they are designing is the next generation Web architecture: theSemantic Web.

Currently, the objective of the Semantic Web architecture is to provide aknowledge
representation of linked data in order to allow machine processingon a global scale. This
involves moving the Web from a repository of datawithout logic to a level where it is
possible to express logic through knowledge representationsystems. The vision for the
Semantic Web is to augment theexisting Web with resources more easily interpreted by
programs and intelligent
Agents.

A defining application for the Semantic Web will be a more effective
searchcapability. While today’s search engines index HTML pages to find many answersand
cover a huge part of the Web, they return many irrelevant pieces of information.There is no
notion of “correctness” to such searches.

The difficulty of semantic search is perhaps its most important limitation.With the
current state of the Web, there are two methods of gaining broaderinformation about
documents. The first is to use a directory, or portal site, manuallyconstructed by searching the
Web and then categorizing pages and links.The problem with this approach is that directories
take a tremendous effort tomaintain. Finding new links, updating old ones, and maintaining
the databasetechnology, all add to a portal’s administrative burden and operating costs.
Thesecond method uses automatic Web crawling and indexing systems.

Consequently, searching the World Wide Web can be frustrating. The resultof having
better standard metadata could be a Web where users and agents coulddirectly tap the latent
information in linked and related pages. This would be apowerful paradigm greatly
improving the intelligent use of Web resources.

By contrast, logic engines have typically been able to restrict their output tothat which
is a provably correct answer, but have suffered from the inability togo through the mass of
connected data across the Web to construct valid answers.

If an engine of the future combines a reasoning engine with a search engine,it may
actually be able to produce useful results. It will be able to reach out toindexes that contain
very complete lists of all occurrences of a given term, andthen use logic to weed out all but
those that can be of use in solving the givenproblem.

If the Semantic Web can bring structure and meaningful content to the Web,it will

create an environment where software agents can carry out sophisticatedtasks for users. The
first steps in weaving the Semantic Web with the existingWeb are already under way. In the
near future, these developments will providenew functionality as machines become better
able to “understand” and processthe data.

For the Semantic Web to function, computers must have access to
structuredcollections of information and sets of inference rules that they can use to
conductautomated reasoning. Artificial Intelligence researchers have long studiedsuch
systems and have produced today’s knowledge representation. Knowledgerepresentation is
currently in a state comparable to that of hypertext before theadvent of the Web.

The objective of the Semantic Web therefore, is to provide a framework thatexpresses
both data and rules for reasoning for Web-based knowledge representation.Adding logic to
the Web means using rules to make inferences, choosecourses of action, and answering
questions. A combination of mathematical andengineering issues complicates this task. The
logic must be powerful enough todescribe complex properties of objects, but not so powerful
that agents can betricked by being asked to consider a paradox.

The development of the Semantic Web is proceeding in a step-by-step
approachbuilding one layer on top of another. Two important technologies for developingthe
Semantic Web are already in place: extensible Markup Language (XML) andthe Resource
Description Framework (RDF).

Building one layer upon another requires each layer to have downward
compatibityand upward partial understanding. Downward compatibility means thatagents are
fully aware of a layer to interpret and use information written at alower level. Upward partial
understanding means that agents take at least partialadvantage of information at higher levels.
For example, an agent aware ofRDF and RDF Schema semantics can interpret knowledge
written in OWL, bydisregarding all but RDF and RDF Schema elements.

Extensible Markup Language lets everyone create their own tags. Scripts, orprograms,
can make use of these tags in sophisticated ways, but the script writerhas to know how the
page writer uses each tag. In short, XML allows usersto add arbitrary structure to their
documents, but says nothing about what thestructure means.

Why is so XML important? Just as HTML is an open standard that allowsinformation
exchange and display over the Internet, XML is an open standardthat allows data to be
exchanged between applications over the Web. XML is thebridge to exchange data between
the two main software development frameworksover the Web: J2EE and .NET. We can
consider XML as a highly functionalsubset of SGML, but as a result, it is a meta-language
that allows users to designtheir own markup languages.

MODULE 2
Knowledge Representation For The Semantic Web

Ontologies:
Ontology’s and their role in the Semantic Web:

The idea of the Semantic Web is to extend unstructuredinformation with machine
process able descriptions of the meaning (semantics)of information and to provide missing
background knowledge where required.The key challenge of the Semantic Web is to ensure a
shared interpretation of information.Related information sources should use the same
concepts to reference thesame real world entities or at least there should be a way to
determine if two sourcesrefer to the same entities, but possibly using different vocabularies.
Ontologies andontology languages are the key enabling technology in this respect. Ontology,
byits most cited definition in AI, is a shared, formal conceptualization of a domain,i.e. a
description of concepts and their relationships. Ontologies aredomain models with two
special characteristics, which lead to the notion of sharedmeaning or semantics:
1. Ontologies are expressed in formal languages with a well-defined semantics.
2. Ontologies build upon a shared understanding within a community. This
understandingrepresents an agreement among members of the community over theconcepts
and relationships that are present in a domain and their usage.

The first point underlines that ontology needs to be modelled using languageswith a
formal semantics. RDF and OWL, the ontology languagesthat we introduce later in this
Chapter, have standardized syntaxes and logic-basedformal semantics. RDF and OWL are the
languages most commonly used on theSemantic Web, and in fact when using the term
ontology many practitioners refer todomain models described in one of these two languages.
The second point reminds as that there is no such thing as a “personal ontology”. For
example, the schema ofa database or a UML class diagram that we have created for the
design of our ownapplication is not ontology. It is a conceptual model of a domain, but it is
notshared: there is no commitment toward this schema from anyone else but us.

Note that the definition does not define the level of detail at which ontologiesneed to
be modeled nor does it specify the minimal expressivity required from an ontology language.
In practice, ontologies differ greatly in complexity. adapted from the work of Smith and
Welty we loosely organize the mostcommon ontological structures according to their
complexity.

The simplest structures are glossaries or controlled vocabularies, in essencean
agreement on the meaning of a set of terms. (Note that amere bag of words doesn’tmeet the
criteria of shared meaning.) An example would be a controlled vocabularyused inside a
support center for describing incidents reported. Such a controlled vocabularyfacilitates the
communication among the helpdesk and the technical staff ofa support center as it enables a
uniform description of the reported problems.

Semantic networks are essentially graphs that show also how terms are related toeach
other. Thesauri are richer structures in that they describe a hierarchy betweenconcepts and
typically also allow describing related terms and aliases. Thesauri arealso the simplest
structures where logic-based reasoning can be applied: the broader narrowerrelationships of
these hierarchies are transitive, in that an item that belongsto a narrower category also
belongs to its direct parent and all of its ancestors.

In the context of the Semantic Web research, it is often assumed that an ontologyat
least contains a hierarchy between the concepts (subclass relationships).

Weaker models with no explicit hierarchies, such as the folksonomiesare often

excluded from the definition. However, we will argue in timethat it is possible to extract
hierarchies as well as relationships between the tags infolksonomies. Further, folksonomies
contain additional information about the socialcontext of tags, i.e. the set of users who have
been using them.

The term lightweight ontology is typically applied to ontologies that make a
distinctionbetween classes, instances and properties, but contain minimal descriptionsof
them. On the other hand, heavyweight ontologies allow describing more preciselyhow classes
are composed of other classes, and provide a richer set of constructs toconstrain how
properties can be applied to classes. At the far ends of the spectrum arecomplex knowledge
bases that use the full expressivity of first order logic (FOL) todefine to a great detail the kind
of instances a concept may have and in which casestwo instances may be related using a
certain relationship. The more constrained thedescriptions of concepts are, the less likely that
their meaning will be misinterpretedby human readers. Further, the closer to the far end of the
spectrum, the larger the
Role that computers can play in reasoning with ontologies. Typical reasoning tasks include
checking the consistency of the usage of terms, classifying concepts (findingsubclass
relations among concepts) and checking for equivalent terms.

Figure:Ontology’s can be organized according to complexity (informally, the level
ofsemantics).

Roughly speaking, the models that can be captured using less expressive
languagescan also be expressed using more expressive languages, e.g. a modeling
languagecapable of describing a semantic network (a graph structure) is typically alsocapable
to describe a classification hierarchy (a tree structure). One may thus wonderwhy a single,
most expressive language is not enough to satisfy all modelingneeds. The answer is partly
that a language that is too expressive (offers features thatare not used) can be in the way of
modeling. Just like in the case of programminglanguages, every ontology language offers a
slightly different (and not entirely overlapping)set of features that precisely matches the
representation needs of a specific
task or domain. We will also see that less expressive modeling languages have
lowerguaranteed computational complexity when it comes to reasoning.

The most common Web ontologies are all lightweight ontologies dueto the need of
serving the needs of many applications with divergent goals. Widelyshared Web ontologies
also tend to be small as they contain only the terms that areagreed on by a broad user base.
Large, heavyweight ontologies are more commonlyfound in targeted expert systems used in
focused domains with a tradition of formalizedprocesses and vocabularies such as the area of

life sciences and engineering. Wehave argued elsewhere that the trade-off between the

formality and sharing scopeof knowledge is unavoidable: models that need to be shared
among many applicationswill end up to be shallow, while a limited scope allows to create
more detailedmodels of the world

Ontology languages for the Semantic Web
Although the notion of ontologies is independent of the Web, ontologies play a specialrole in
the architecture of the Semantic Web. We show a schematic view of thisarchitecture in
Figure. This architecture provides the main motivation for the designof ontology languages
for the semantic Web: RDF and OWL are both preparedfor the distributed and open
environment of the Web.

Figure:The Semantic Web in envisioned as a network of ontologies that adds
machineprocess ablesemantics to existing web content, including Web resources and
databases.

The Semantic Web will be realized by annotatingexisting Web resources with
ontology-based metadata and by exposing thecontent of databases by publishing the data and
the schema in one of the standardontology languages.

Ontology languages designed for the Semantic Web provide the means to
identifyconcepts in ontologies using globally unique identifiers (URIs). These identifiers
canbe used in data sources to point to a concept or relationship from an external,
publicontology. Similar to creating HTML pages and linking them to existing ones,
anyonecan create and publish an ontology, which may reference the concepts in
remoteontologies. Much like the hyperlinks among web pages, it is expected that
thesereferences will form a contiguous web linking all knowledge sources across the Web.As
URLs are also URIs, ontologies can also reference existing Web resources anddescribe their
characteristics.

The (meta)data and its schema can be made public either by publishing an RDFor
OWL document online (which may be dynamically generated from a database orthrough a
Web service invocation) or by providing access to a data source throughimplementing the
standard query language and protocol of the Semantic Web. The schema and the data itself
can be published as separate documents or query endpoints,but as we will see, ontology
languages for the Semantic Web allow mixinginformation about the schema of a data source
and the instances (the records, indatabase terms).

Semantic Web applications collect or query such data sources, aggregate andreason

with the results. Information described according to a single schema that isknown by the
application developer can be directly consumed: by committing to ontology the parties
involved have already implicitly agreed on the meaning ofthe information. In this case, the
interesting task left is the aggregation of instancedata, i.e. finding equivalent instances across
the data sources, if they exist.

When annotating Web content or exposing the content of a database, one maychoose
to create ontology from scratch, or reuse an existing ontology while possiblyextending it.
However, as there is no coordination of any kind in reusing ontologies,it may happen that two
communities develop ontologies that cover the same oroverlapping domains. (For example,
there are several known ontologies that describetypes of scientific publications and their
properties (e.g. scientific articles that have atitle, a set of authors, a journal and a publication
date.) In this case, we need to determinehow the classes in one ontology are related to the
classes in ontology.(For example, that the Article class in one ontology is the same as the
Journal Publicationclass in ontology.) Finding equivalences and other relations amongterms
in different ontologies is the task of ontology mapping, a problem we do notaddress in this
volume.

What we would like to emphasize is the role of machine-process able semantics
inboth the mapping of classes and instances. The more formal and detailed ontologyis, the
more accurately it can capture the intended meaning of concepts and relationships.

Ontology languages for the Semantic WebIn the following, we introduce the
ontology languages RDF and OWL, which havebeen standardized in recent years by the
World Wide Web Consortium.

The Resource Description Framework (RDF) and RDF Schema
The Resource Description Framework (RDF) was originally created to describe resourceson
the World Wide Web (in particular web pages and other content), hencethe name. In reality,
RDF is domain-independent and can be used to model both realworld objects and information
resources. RDF itself is a very primitive modelinglanguage, but it is the basis of more
complex languages such as OWL.

There are two kinds of primitives in RDF: resources and literals (character
sequences).The definition of a resource is intentionally vague; in general everything
ismodeled as a resource that can be (potentially) identified and described. Resourcesare either
identified by a URI or left blank. URIs are identifiers with a special syntaxdefined in Blank
resources (blank nodes) are the existential quantifiersof the language: they are resources with
an identity, but whose identifier is notknown or irrelevant. (This is no way in the RDF model
itself to assign an identifierto a blank node.) Literals are strings (character literals) with
optional language anddata type identifiers.

Expressions are formed by making statements (triples) of the form (subject,
predicate,and object). The subject of a statement must be a resource (blank or with a URI),the
predicate must be a URI and the object can be either kind of resource or a literal.Literals are
thus only allowed at the end of a statement.

RDF is very easy to understand in practice. The following brief RDF
documentdescribes a person named Rembrandt. The six statements are alsoshown as a
directed, labeled graph. In this visualization the nodes arethe subjects and objects of
statements, labeled with the URI or literal or left blank,and the edges connect the subjects and
objects of statements and are labeled withthe URI of the property. As we can see the

statements of the RDF model form agraph because the object of one statement can be

the subject of another statement.(As noted literals cannot be the subjects of statements, i.e.
there are no arrows goingfrom literals.)

This fragment is written in the Turtle syntax, one of the many notations of RDFgraphs
. We will later also encounter the RDF/XML syntax, an XML-based notationdefined by
theWorldWideWeb Consortium. RDF/XML has been the first and up to date the most widely
used syntax. As an XML based syntax, it alsohas the advantage of being process able by
XML tools. However, other notations suchas Turtle are often preferred for their readability
by human authors.

A set of triples describing two persons represented in the Turtle language.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#label> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix example: <http://www.example.org/> .
example:Rembrandtrdf:typefoaf:Person .
example:Saskiardf:typefoaf:Person .
example:Rembrandtfoaf:name "Rembrandt" .
example:Rembrandtfoaf:mbox<mailto:rembrandt@example.org> .
example:Rembrandtfoaf:knowsexample:Saskia .
example:Saskiafoaf:name "Saskia" .

Figure:A graph visualization of the RDF document

The RDF language provides the basic term to assign a type to a resource(rdf:type) and to
declare a resource as a property . It also provides features to describe collections of
instances12 and to make statements about statements (reification)13. The descriptive power
of RDF is minimal that in practice it is always usedin combination with RDF Schema. RDF
Schema is a simple extension of RDF defininga modeling vocabulary with notions of classes
and subclasses.

Classes and properties can be connected by specifying the domain and range of
properties.Note that the division of terms between the RDF and RDF Schema namespaces
isvery unnatural: for example, rdf:typeproperty appears in the RDF namespace, eventhough
there are no classes in RDF. On the other hand, the rdfs:Literalclass is in theRDF(S)

namespace even though literals are a feature of RDF. For this reason and forthe

limited use of RDF on its own, most people refer to an RDF Schema ontologywhen talking
about an ‘RDF ontology’ or ‘RDF data’. In the following, we will alsouse the term RDF in
this sense and apply the term RDF Schema when we specificallyintend to speak about the
RDF Schema vocabulary.

The firstgroup of statements describes the class Person. The type of the resource is
specifiedas owl: Class, we give a label, name a super class and state that this class is
disjointfrom the class of documents. We then describe the foaf: knows and foaf: name
properties we haveBasic constructsused above, specifying their type label, domain, range and
a super property in thecase of foal :name.

What is likely to be surprising here is that in comparison to most other
modelingFrameworks we use the same model of subject/predicate/object to describe
instancesas well as classes. The statements describing a set of instances and theStatements
describing the higher level of classes are typically stored inSeparate documents on the Web,
but this is not a requirement.

In fact it is not always trivial to separate the description of the instances from
thedescription of classes. We may want to store instance data and the ontology togetherfor
practical reasons. But also, for example, we may want to describe a class usingtypical
instances such as when describing the concept of a Weekday, which is a classof five days. In
this case drawing a clear line between instance data (metadata) andclass data (schema) is
problematic even from a conceptual point of view. This isreflected in the rather ambiguous
usage of the term ontology, which is sometimesused to refer to the classes only, and
sometimes to a set of instances and classes bundled together.

The example also reveals some of the impressive flexibility of RDF. The constructsof
language itself form a vocabulary just like the terms of any domain ontology.In other words,
terms like rdfs:Classare not treated any different from user definedclasses. This means that it
is very well possible to form statements aboutthe elements of the language itself. This is used
sometimes to establish relationshipbetween elements of a domain and the RDF Schema
vocabulary, for example to statethat a domain specific labeling property (such as a property
providing the name fora person) is a sub property of the more general rdfs: label property.
We have done thatwhen declaring the foaf: name property as a sub property of the
rdfs:labelproperty.

Some statements from the FOAF ontology about the terms used in the previousexample.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
foaf:Personrdf:typeowl:Class .
foaf:Personrdfs:label "Person" .
foaf:Personrdfs:subClassOffoaf:Agent
foaf:Personowl:disjointWithfoaf:Document .
foaf:knowsrdf:typeowl:ObjectProperty .
foaf:knowsrdfs:label "knows" .
foaf:knowsrdfs:domainfoaf:Person .
foaf:knowsrdfs:rangefoaf:Person .
foaf:namerdf:typeowl:DatatypeProperty .
foaf:namerdfs:label "name" .
foaf:namerdfs:subPropertyOfrdfs:label .
foaf:namerdfs:domainowl:Thing .

foaf:namerdfs:rangerdfs:Literal
Although it makes little sense, one might even state for example that rdfs:Resourceis an
rdfs:subClassOfrdfs:Class, effectively claiming that all resources are classesin the
model.Further, RDF makes no clear separation between classes, instances and properties.One
can create classes of instances (met modeling), which is often required inmodeling practical
knowledge. (The classical example is modeling the notion ofspecies as a class of classes of
animals.) Metamodeling is also present in the example,as we have seen that the rdf:typeis
used on both an instance (Rembrandt,whose class is Person), and a class (Person, whose class
is the class of all classes)and we used the rdfs:labelproperty on both instances, classes and
properties. Classesof properties are also often used to characterize properties. For example, in
the caseof the OWL language the resource owl:DataTypePropertyis the class of
propertiesthat have Literal values.

Lastly, part of the flexibility of RDF is that language constructs are not interpretedas
strictly as we might expect. For example, even though the range of thefoaf:knowsproperty is
defined to be foaf:Person we can still add the statementthat example:Rembrandtfoaf:knows
mailto:saskia@example.org. While one wouldmight expect that this leads to a logical
contradiction as we are confusing peopleand their email addresses, this RDF statement is
merely interpreted as a hint that theresource mailto:saskia@example.org is both an email
address and a Person.

RDF and the notion of semantics
In the above we have been largely concerned with the syntax of the language: thekind of
symbols (resources and literals) we have and the way to form statementsfrom them. Further,
we introduced some special resources that are part of the RDFand RDF Schema languages
(e.g. rdfs:subClassOf) and gave their meaning in a colloquialstyle. However, if we want to
use RDF(S) for conveying knowledge across theWeb, we need to be able to define the
meaning of our language (and thus the meaningof ontologies) in a much more reliable
fashion. This is important from the perspectiveof machine reasoning: for example, we are
often interested to check whether a certainstatement necessarily follows from a set of existing
statements or whether thereis contradiction among a set of statements. What we then need is
an agreement on amethod to unambiguously answer such questions independently of our
interpretationof the natural language description of the RDF(S) constructs.

The meaning of RDF(S) constructs is anchored in a model-theoretic semantics,one of
the most common ways to provide semantics [Hay04]. Using model-theoreticsemantics
meaning is defined by establishing a mapping from one model to a metamodelwhere the truth
of propositions is already uniquely determined. In the contextof RDF such a mapping is
called an interpretation.

Although a meta-model can be defined in another formal system, it is convenientto
think of the meta model as some independently existing reality that the ontology isintended to
describe. Thus an interpretation can be thought of as a mapping betweensymbols and the
objects or relations they intended to describe.

Figure:An interpretation is a mapping between the terms of ontology and an
interpretationdomain.

The constructs of RDF are used to put constraints on possible interpretations andto
exclude thereby some of the unintended interpretations. For example, we onlywant to allow
interpretations where symbols for the two persons are mapped to differentobjects. In other
words, we want to exclude interpretations where the twoinstances are mapped to the same
object. In order to achieve this we can specifythat the instance Rembrandt is
owl:differentFromthe second instance Saskia.

The model theory of RDF(S) provides some axiomatic triples that are true inevery
RDF(S) interpretation (for example, rdf:Propertyrdf:type rdfs:Class) and definesthe
constraints that language elements put on possible interpretations of RDF(S)models. In
practice, these semantic conditions can be expressed as a set of rules: forexample, the
semantics of rdfs:subPropertyOfis given by the following rules:
(aaa, rdfs:subPropertyOf , bbb) (bbb, rdfs:subPropertyOf , ccc)
→ (aaa, rdfs:subPropertyOf , ccc)
(aaa, rdfs:subPropertyOf , bbb) → (aaa, rdf:type, rdf:Property)
(aaa, rdfs:subPropertyOf , bbb) → (bbb, rdf:type, rdf:Property)
(xxx, aaa, yyy) (aaa, rdfs:subPropertyOf , bbb) → (xxx, bbb, yyy)

The most noteworthy feature of RDF semantics is that the interpretation of thelanguage is
based on an open world assumption and is kept monotonic. An openworld assumption means
that based on a single document we cannot assume that wehave a complete description of the
world or even the resources explicitly describedtherein. Monotonicity means additional
knowledge added to an RDF knowledge basecannot make previous inferences invalid.17 For
example, if we specify that the rangeof the foaf:knows property is Person and then state that
Rembrandt knows an instanceof another class such as Pluto the dog (or even a literal value)
we do not cause a(logical) contradiction; it is assumed that there could exist a statement
defining thatsome other class (e.g. Dog) is also in the range of foaf:knows.

A consequence of monotonicity is that it makes no sense of talking about
RDFvalidation: RDF Schema statements about an RDF resource only add additional
informationabout the resource and cannot invalidate or contradict statements
previouslyinferred about that resource. In fact, RDF Schema semantics is specified as aset of
inference rules; in the example, these rules would allow to infer that the resourceprovided as
the object of the foaf:knowsproperty is (also) a Person besidespossibly being other things

SPARQL: querying RDF sources across the Web

Through the years several ontology databases (triple stores) have been developed,each
featuring their own query language. As all of these query languages operate onthe same data
model (an RDF graph), these query languages have in common thatthey allow to select
retrieve parts of an RDF graph by matching a graph pattern providedby the query and return
the possible values of variables in the query pattern. There are, however, differences in
syntax and the exact set of features.
At the time of writing, theWorldWideWeb Consortium is working on creating a

recommendation called SPARQL, establishing a standard query language and a
protocolfor interacting with RDF sources. The query language captures the commonset of

features of the existing RDF query languages [PS06]. The protocol prescribesthe way

a software application would query a remote ontology store across the Internet,i.e. the way to
submit a SPARQL query to a server and the expected formatof the results (and eventual error
messages) [Cla06]. The SPARQL specifications areexpected to significantly increase the
interoperability of SemanticWeb applications.Also, the content of non-RDF databases may
also be exposed using a SPARQL interface,opening up their content to the SemanticWeb
world. (The process of wrappinga relational database in a SPARQL interface can be partially
automated.

Web languages:The Web Ontology Language (OWL)
The Web Ontology Language (OWL) was designed to add the constructs of
DescriptionLogics (DL) to RDF, significantly extending the expressiveness of RDFSchema
both in characterizing classes and properties. Description Logics are a set ofKnowledge
Representation languages with formal semantics based on their mappingto First Order Logic
(FOL). Description Logics have been extensively studied sincethe 1980s including studies on
the tradeoffs between the expressivity of the chosen language and the efficiency of
reasoning. OWL has been designed in a way that itmaps to a well-known Description Logic
with tractable reasoning algorithms.

The Web Ontology Language is in fact a set of three languages with
increasingexpressiveness: OWL Lite, OWL DL and OWL Full. These languages are
extensionsof each other (OWLLite⊆OWLDL ⊆OWLFull) both syntactically and
semantically.For example, every OWL Lite document is a valid OWL DL document andhas
the same semantics when considered as an OWL DL document, e.g. it leads tothe same
logical conclusions. The vocabularies of these languages extend each otherand languages
further up in the hierarchy only relax the constraints on the use ofthe vocabulary. Although it
is generally believed that languages of the OWL family
Would be an extension of RDF(S) in the same sense, this is only true for OWL Full,the most
expressive of the family (RDF(S) ⊆OWLFull).

The middle language, OWL DL was the original target of standardization and itis a
direct mapping to an expressive Description Logic. This has the advantage thatOWL DL
documents can be directly consumed by most DL reasonless to performinference and
consistency checking. The constructs of OWL DL are also familiar,although some of the
semantics can be surprising mostly due to the open world assumption. (Shows the OWL DL
vocabulary, which is the sameas the vocabulary of OWL Full.) Description Logics do not
allow much of the representationflexibility introduced above (e.g. treating classes as
instances or definingclasses of properties) and therefore not all RDF documents are valid
OWL DL documentsand even the usage of OWL terms is limited.

For example, in OWL DL it is not allowed to extend constructs of the language,i.e. the
concepts in the RDF, RDF Schema and OWL namespaces. In the case of thenotion of a
Class, OWL also introduces a separate owl:Classconcept as a subclass ofrdfs:Classin order to
clearly distinguish its more limited notion of a class. Similarly,OWL introduces the disjoint
classes of object properties and datatype properties. Thefirst refers to properties that take
resources as values (such as foaf:knows) and thelatter is for properties ranging on literals such
as foaf:name.

OWL Full is a “limitless” OWL DL: every RDF ontology is also a valid OWLFull
ontology and has the same semantics when considered as an OWL Full document.However,

OWL Full is undecidable, which means that in the worst case OWLFull reasoners will

run infinitely. OWL Lite is a lightweight sub-language of OWLDL, which maps to a less
expressive but even more efficient DL language. OWL Litehas the same limitations on the
use of RDF as OWL DL and does not contain someof the terms of OWL DL.

In summary, RDF documents are not necessarily valid OWL Lite or OWL
DLontologies despite the common conviction. In fact, “downgrading”a typical RDF or OWL
Full ontology to OWL DL is a tedious engineeringtask. It typically includes many simple
steps such as declaring whether properties areobject properties or data type properties and
importing the external ontologies usedin the document, which is mandatory in OWL but not
in RDF. However, the process often involves more fundamental modeling decisions when it
comes to finding alternaterepresentations.
Most existing web ontologies make little use of OWL due to their limited needs,but also
because general rule-based knowledge cannot be expressed in OWL. Theadditional
expressivity of OWL, however, is required for modeling complex domainssuch as medicine
or engineering, especially in supporting classification taskswhere we need to determine the
place of a class in the class hierarchy based on itsdescription.

Unified Modeling Language (UML)
UML is most commonly used in the requirements specification and design of object-
orientedsoftware in the middle tier of enterprise applications [Fow03]. The chief difference
between UML and RDF(S)/OWL is their modeling scope: UML containsmodelingprimitives
specific for a special kind of information resource, namely objectsin an information system
characterized by their static attributes and associations,but also their dynamic behavior. Many
of the modelling primitives of UMLare thus specific to objects and their role in OO systems;
interfaces, functions etc.are examples of such constructs.22 Nevertheless, if we ignore these
constructs ofthe languages and the difference in scope, there is still a significant overlap in
theexpressiveness of object-oriented models of a domain and ontological models.

Figure 4.8 shows our examplemodelled in UML. It is natural to model propertiesthat
take primitive values as datatypes and model all other properties as associations.(However,
attributes can also take model classes as types.) UML is primary a schemadefinition language
and thus the modelling of instances is limited.

Based on the comparison of OWL Full and UML 2.0 we can note that there is
asignificant overlap as well as differences in the modelling capabilities of OWL andUML
[HEC+04]. In the following we summarize the more specific differences bylooking at the
unique features of these frameworks.

Comparison to the Extensible Markup Language (XML) and XMLSchema

Up to date XML is the most commonly used technology for the exchange of
structuredinformation between systems and services. From all languages discussed therole of
XML is thus the most similar to RDF in its purpose.
The most commonly observed similarity between XML and RDF is a similaritybetween the
data models: a directed graph for RDF and a directed, ordered tree forXML. In XML, the tree
is defined by the nesting of elements starting with a singleroot node. This model originates
from the predecessor of XML called SGML whichwas primarily used for marking up large
text documents. Text documents follow thetree structure themselves as paragraphs are nested
in subsections, subsections arenested in sections, sections are nested chapters etc. The
ordering of the children ofan element matters, which is again inherited from the text

processing tradition. Onthe other hand, RDF proposes a more relaxed data model based on
arbitrary directedgraphs built from single edges between the nodes representing classes or
instances.This structure is better suited for creating conceptual domain models, which are
oftenso rich in cross-taxonomical relationships that a hierarchical representation wouldprove
to be difficult. Noting that every tree is a graph (and ignoring the ordering of children for a
moment) one would expect that it is trivial to represent XML modelsin RDF, although as we
will see this is not the case.

Much like RDF, XMLitself is merely a common conceptual model and syntax
fordomain specific languages each with their own vocabulary (hence the name
extensible).Examples of these languages include XHTML, but also specialized
languagessuch as the GraphML language for descriptions of graphs or the SVG image
formatfor vector graphic images. XML has a number of schema languages such as
XMLSchema and Relax NG to define such languages. The use of these schema
languages,however, is radically different. Namely, schemas written in XML schema
languagesnot only define the types of elements and their attributes but also prescribe syntax
i.e. the way elements are allowed to be nested in the tree. XML documents can be
validatedagainst a schema on a purely syntactic level. Schema languages for RDF
(RDFSchema and OWL) do not impose constraints directly on the graph model but effectthe
possible interpretations of metadata. Consistency of an RDF/OWL model ischecked by
searching for possible interpretations. (If there are no possible interpretationsof a model than
it is inconsistent.) As we have already seen, RDF and OWL alsotranscend the relatively
vague notions of XML (such as elements, attributes, nestingetc.) and provide a more refined
set of constructs (classes, instances and properties).

To illustrate the difference in the focus of XML and RDF, let us consider how wewould
represent the same information captured in Figure 4.3 in XML. Figure 4.10shows three
possible XML representations. While the intended meaning (semantics)of these documents is
the same, the syntax and thus the resulting XML tree is different.(The order of the branches
matters in XML, which is the only differencebetween the second and third examples.) This
means that applications working onthe basis of different representations would be
incompatible: XML queries and XSLtransformations performed on these different
representations would produce differentresults. Thus there needs to be an agreement on both
syntax and semantics whenusing XML. For web-based data interchange RDF has a clear
advantage here in thatagreement on a shared XML format would require a much stronger
commitmentthan the agreement of using RDF. The kind of agreement that is needed to
exchangeRDF documents concerns only the representation of individual statements (the
simplesubject/predicate/object model) as we have seen on the example of the Turtlelanguage.

As an aside, we also see the difficulty of XML in dealing with graph-like
structures:choosing the top node is an arbitrary decision when dealing with such
information.This is particularly obvious in representing social networks (Person entitieslinked
with knows relationships), it is generally true that real world domain modelscan be rarely
forged into a single, unique tree structure.

XML is highly appreciated for the variety of complementary tools and
technologiessuch as XML databases, standard schema, query and transformation
languages(XQuery and XSLT), a range of editors, parsers, processors etc. The legacy of
XMLcompelled also theW3C to adopt it also as a notation for RDF and OWL. This kind
ofcontingency is popularized by the famous Semantic Web layer cake diagram in
Figure4.1128 This picture

shows the vision of the Semantic Web as a set of languagesbuilding upon existing

standards such as XML, URIs and Unicode. Despite the goodintentions, however, this
diagram obfuscates the true relationship between XML andontology languages from the W3C
such as RDF and OWL. (We have already seenthat the relationship between RDF and OWL
is also more complicated than simple.
Three different XML representations of the same information.extension.) By doing so it has
done more damage to the argument for ontology languagesover XML than any other
conceptualization of the next generation Web.

<Person name="Rembrandt">
<mbox>mailto:rembrandt@example.org</mbox>
<knows>
<Person name="Saskia" />
</knows>
</Person>
<Person name="Rembrandt">
<mbox>mailto:rembrandt@example.org</mbox>
<knows>
<Person ID="1"/>
</knows>
</Person>
<Person name="Saskia" ID="1" />
<Person name="Saskia" ID="1" />
<Person name="Rembrandt">
<mbox>mailto:rembrandt@example.org</mbox>
<knows>
<Person ID="1"/>
</knows>
</Person>

Figure: The Semantic Web layer cake.

The layer cake suggests, namely that RDF builds on XML is true onlyto the extent that RDF
models can be exchanged using an XML format named RDF/XML.29 In the RDF/XML
syntax the statements from the graph are simplywritten out one-by-one with some
possibilities for abbreviation. This means thatthere are a number of possible XML
serializations for every RDF graph dependingon whether these abbreviations are used, how
the statements are ordered etc.In practice, while such RDF/XML documents are valid XML
and thus they can bestored in XML databases and queried using XML Query languages such
as XQueryor transformed using XSLT, these queries and transformations will be sensitive to
aparticular serialization. All in all, the only useful tools with respect to RDF/XMLfiles are
XML editors and they are only helpful in checking the well-forkedness ofthe representation.

In the other direction, the re-representation of XML schemas and data using RDFis
also more difficult than suggested by the layer cake. Transforming XML
documentsminimally requires assigning namespaces to elements and attributes.
Further,RDF/XML mandates a striped syntax requiring that instances and propertiesare
nested correctly into each other. Most XML schemas, however, have not beendesigned to
conform with this striped syntax. For example, the following XML documentfrom the XML
Schema Primer violates the assumption of the striped syntaxin that it lacks a level of elements
between shipTo and name: name is a property aninstance of an omitted Person class.

<?xml version="1.0"?>
<apo:purchaseOrderxmlns:apo="http://www.example.com/PO1"
orderDate="1999-10-20">
<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<!-- etc. -->
</shipTo>
<billTo country="US">
<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<!-- etc. -->
</billTo>

<apo:comment>Hurry, my lawn is going wild</apo:comment>
<!-- etc. -->
</apo:purchaseOrder>

While there is no way to automate the process of XML to RDF conversion inthe
general case, it is possible to design XSLT transformations that carry out this jobfor
particular schemas. The rather inaptly named GRDDL30 specification provides astandard
way of attaching such transformations to XML documents. GRDDL onlydescribes an agreed
way to attach transformations to an XML or XHTML document:the agreement on the way to
represent and extract metadata is left to the authorsof XML formats and transformations. (For
example, there is a style sheet to extractFOAF data from appropriately marked up XHTML
documents.31 AnotherW3C proposal,the RDF/A syntax gives a generic, domain-

independent way to embed RDFmetadata in XHTML by adding certain attributes and

special elements [AB06].
For newly designed formats a practical alternative is to create a DTD or XMLSchema

that takes into account the requirements of RDF/XML or put differently:use RDF/XML in a
constrained way so that it conforms to a particularXML Schema.This is the approach that was
used in the design of the RSS 1.0 format, which can bemeaningfully processed by both XML
and RDF tools.

Transforming existing XML Schema documents into RDF/OWL is unfortunatelynot a
trivial task, because the XML model and the rather complex XML Schemastandard have
notions that RDF/OWL lack and vice versa. For example, XML distinguishesbetween
attributes and terminal elements with simple type values (the differencebetween the attribute
country and the element name in the above example)and there is a natural ordering of
elements32, i.e. the schema for the above examplecan specify that name has to be listed
before email while in RDF the order in whichproperties are listed cannot be constrained. The
advanced features of XML Schemainclude the definition of uniqueness which is similar to
the notion of keys in E/Rmodels. There is also a possibility to define keys and key references
linking parts ofthe schema through an integrity constraint, i.e. that the key reference should
containan existing value from the set of keys. These constructs can not be trivially
expressedin OWL either.

MODULE III
Ontology Engineering

Ontology Devolpment: The field of Philosophy originally defined the word ontology to
represent the concept of existence. It is the theory of objects and their interrelationships. As
used in information science, the term ontology frequently refers to a hierarchical data
structure containing the relevant objects and their relationships, as well as the rules within
that domain.
In the field of Artificial Intelligence (AI), ontology applications have been developed for
knowledge management, natural language processing, e-Commerce, education, and new
emerging technologies such as the Semantic Web. The Semantic Web requires the
construction of ontologies for its various representation languages, query languages, and
inference technologies. The basic methodology for designing and building ontologies. In
addition, ontology matching and mapping, which are essential to knowledge representations,
are described.

ONTOLOGY ENGINEERING
Ontology is the formal specification of terms within a domain and their relationships. It
defines a common vocabulary for the sharing of information that can be used by both humans
and computers. Ontologies can be in the form of lists of words; taxonomies, database schema,
frame languages and logics. The main difference between these forms is their expressive
power. Ontology together with a set of concept instances constitutes a knowledge base.

If a program is designed to compare conceptual information across two knowledge
bases on the Web, it must know when any two terms are being used to mean the same thing.
Ideally, the program must have a way to discover common meanings for whatever knowledge
bases it encounters. Typically, an ontology on the Web will combine a taxonomy with a set of
inference rules.

Taxonomy is defined as a set of classes of objects and their relationships. These
classes, subclasses, and their relationships are important tools for manipulating information.
Their relations are described by assigning properties to classes and allowing subclasses to
inherit these properties. Ontology then is a taxonomy plus inference.

Ontology inference rules allow manipulation of conceptual information. The most
important ontology relationship is the subsumption link (e.g., subtype and super type link).

When a network of concepts is represented by a tree, it rigorously defines the
taxonomy. While ontology can sometimes be modularized as a set of trees, some advocate
that all ontology should be taxonomic, but others favor a lattice structure. For example,
ontology rigorously defines a Thesaurus structure when it uses the related-to link in addition
to the subsumption link

Ontology engineering seeks a common vocabulary through a data collection process
that includes discussions, interviews, document analysis, and questionnaires. Existing
ontologies on a subject are discovered, assessed, and reused as much as possible to avoid
“reinventing the wheel.” As part of this process, ontologies are designed as living objects
with a maintenance cycle.

Ontology Applications
The simplest ontology consists of a simple taxonomy with a single relation. Categories of
ontology applications can be grouped as • Neutral Authoring: The author of an object in a
single language translates into a different format for use in alternative applications.
• Ontology as Specification: Ontology of a given domain is created and used as a basis for
specification and development of some software. This approach allows documentation,
maintenance, reliability and knowledge (re)use.
• Common Access to Information: Information in an inaccessible format becomes intelligible
by providing a shared understanding of the terms, or by mapping between sets of terms.
Ontology-Based Search: Ontology is used for searching an information repository.

CONSTRUCTING ONTOLOGY
Ontology permits sharing common understanding of the structure of information among
people and software agents. Since there is no unique model for a particular domain, ontology
development is best achieved through an iterative process.

Objects and their relationships reflect the basic concepts within an ontology. An
iterative approach for building ontologies starts with a rough first pass through the main
processes as follows:
• First, set the scope. The development of an ontology should start by defining its domain and
scope. Several basic questions are helpful at this point: What will the ontology cover? How
will the ontology be used? What questions does the ontology answer? Who will use and
maintain the ontology? The answers may change as we proceed, but they help limit the scope
of the model.
• Second, evaluate reuse. Check to see if existing ontologies can be refined and extended.
Reusing existing ontologies will help to interact with other applications and vocabularies.
Many knowledge-representation systems can import and export ontologies directly for reuse.
• Third, enumerate terms. It is useful to list all terms, what they address, and what properties
they have. Initially, a comprehensive list of terms is useful without regard for overlapping
concepts. Nouns can form the basis for class names, and verbs can form the basis for property
names.
• Fourth, define the taxonomy. There are several possible approaches in developing a class
hierarchy: a top-down process starts by defining general concepts in the domain. A bottom-up
development process starts with the definition of the most specific classes, the levels of the
hierarchy, with subsequent grouping of these classes into more general concepts. A
combination development process combines the top-down and bottom-up approaches: define
the more salient concepts first and then generalize them appropriately.
• Fifth, define properties. The classes alone will not provide enough information to answer
questions. We must also describe the internal structure of concepts. While attaching
properties to classes one should establish the domain and range. Property constraints (facets)
describe or limit the set of possible values for a frame slot.
• Sixth, define facets. Up to this point the ontology resembles a RDFS without any primitives
from OWL. In this step, the properties add cardinality, values, and characteristics that will
enrich their definitions.
• Seventh, the slots can have different facets describing the value type, allowed values, the
number of the values (cardinality), and other features of the values. Slot cardinality: the
number of values a slot has. Slot value type: the type of values a slot has. Minimum and
maximum value: a range of values for a numeric slot. Default value: the value a slot has
unless explicitly specified otherwise.

 Eighth, define instances. The next step is to create individual instances of classes in the
hierarchy. Defining an individual instance of a class requires choosing a class, creating an
individual instance of that class, and filling in the slot values.
• Finally, check for anomalies. The Web-Ontology Language allows the possibility of
detecting inconsistencies within the ontology. Anomalies, such as incompatible domain and
range definitions for transitive, symmetric, or inverse properties may occur.
Ontologies can be constructed by iterating through this process.

 ONTOLOGY DEVELOPMENT TOOLS
Below is a list of some of the most common editors used for building ontologies:
• DAG-Edit provides an interface to browse, query and edit vocabularies with a DAG data
structure: http://www.geneontology.org/#dagedit.
• Protege 2000 is the most widely used tool for creating ontologies and knowledge bases:
http://protege.stanford.edu/index.shtml.
• WonderTools is an index for selecting an ontology-building tool: http://
www.swi.psy.uva.nl/wondertools/.
• WebOnto is a Java applet coupled with a Web server that allows users to browse and edit
knowledge models.

ONTOLOGY METHODS

Several approaches for developing ontologies have been attempted in the last two
decades. In 1990, Lenat and Guha proposed the general process steps. In 1995, the first
guidelines were proposed on the basis of the Enterprise Ontology and the TOVE (TOronto
Virtual Enterprise) project. At the 12th European Conference for Artificial Intelligence in
1996, a method to build ontology in the domain of electrical networks was proposed. The
methodology Meth ontology appeared at about the same time. A few years later, the On-To-
Knowledge methodology was developed.

The Cyc Knowledge Base (see http://www.cyc.com/) was designed to accommodate
all of human knowledge and contains about 100,000 concept types used in the rules and facts
encoded in its knowledge base. The method used to build the Cyc consisted of three phases.
The first phase manually codified articles and pieces of knowledge containing common sense
knowledge implicit in different sources. The second and third phase consisted of acquiring
new common sense knowledge using natural language or machine learning tools.

The Electronic Dictionary Research (ERD) project in Japan has developed a
dictionary with over 400,000 concepts, with their mappings to both English and Japanese
words. Although the EDR project has many more concepts than Cyc, it does not provide as
much detail for each one WordNet is a hierarchy of 166,000 word form and sense pairs.
WordNet does not have as much detail as Cyc or as broad coverage as EDR, but it is the most
widely used ontology for natural language processing, largely because it has long been easily
accessible over the Internet Cyc has the most detailed axioms and definitions; it is an
example of an axiomatized or formal ontology. Both EDR and WordNet are usually
considered terminological ontologies. The difference between a terminological ontology and
a formal ontology is one of degree: as more axioms are added to a terminological ontology, it
may evolve into a formal or axiomatized ontology.

The main concepts in the ontology development include: a top-down approach, in
which the most abstract concepts are identified first, and then, specialized into more specific
concepts; a bottom-up approach, in which the most specific concepts are identified first and

then generalized into more abstract concepts; and a middle-out approach, in which the

most important concepts are identified first and then generalized and specialized into other
concepts.

Methontology was created in the Artificial Intelligence Lab from the Technical
University of Madrid (UPM). It was designed to build ontologies either from scratch, reusing
other ontologies as they are, or by a process of reengineering them. The Methontology
framework enables the construction of ontologies at the knowledge level. It includes the
identification of the ontology development process, a life cycle based on evolving prototypes,
and particular techniques to carry out each activity. The ontology development process
identifies which tasks should be performed when building ontologies (scheduling, control,
quality assurance, specification, knowledge acquisition, conceptualization, integration,
formalization, implementation, evaluation, maintenance, documentation, and configuration
management).

The life cycle identifies the stages through which the ontology passes during its
lifetime, as well as the interdependencies with the life cycle of other ontologies. Finally, the
methodology specifies the techniques used in each activity, the products that each activity
outputs, and how they have to be evaluated. The main phase in the ontology development
process using the Methontology approach is the conceptualization phase.

By comparison, the On-To-Knowledge methodology includes the identification of
goals that should be achieved by knowledge management tools and is based on an analysis of
usage scenarios. The steps proposed by the methodology are kickoff: where ontology
requirements are captured and specified, competency questions are identified, potentially
reusable ontologies are studied, and a first draft version of the ontology is built; refinement:
where a mature and application oriented ontology is produced; evaluation: where the
requirements and competency questions are checked, and the ontology is tested in the
application environment; and finally ontology maintenance.

 ONTOLOGY SHARING AND MERGING
Knowledge representation is the application of logic and ontology to the task of constructing
automated models. Each of the following three fields contributes to knowledge
representation:
• Logic: Different implementations support different subsets and variations of logic. Sharing
information between implementations can usually be done automatically if the information
can be expressed a common subset.
• Ontology: Different systems may use different names for the same kinds of objects; or they
may use the same names for different kinds.
• Computation: Even when the names and definitions are identical, computational or
implementation side effects may produce different behaviors in different systems. In some
implementations, the order of entering rules may have inferences that impact computations.
Sometimes, the side effects may cause an endless loop.

Although these three aspects of knowledge representation pose different kinds of
problems, they are interdependent. Standardizing the terminology used to classify and find
the information is important. For artificial intelligence, where the emphasis is on computer
processing, effort has been directed to precise axioms suitable for extended computation and
deduction.

ONTOLOGY LIBRARIES

Scientists should be able to access a global, distributed knowledge base of scientific
data that appears to be integrated, locally available, and is easy to search. Data is obtained by
multiple instruments, using various protocols in differing vocabularies using assumptions that
may be inconsistent, incomplete, evolving, and distributed. Currently, there are existing
ontology libraries including
• DAML ontology library (www.daml.org/ontologies).
• Ontolingua ontology library (www.ksl.stanford.edu/software/ontolingua/).
• Prot´eg´e ontology library (protege.stanford.edu/plugins.html). Available upper ontologies
include
• IEEE Standard Upper Ontology (suo.ieee.org).
• Cyc (www.cyc.com).Available general ontologies include
• (www.dmoz.org).
• WordNet (www.cogsci.princeton.edu/∼wn/).
• Domain-specific ontologies.
• UMLS Semantic Net.
• GO (Gene Ontology) (www.geneontology.org).
• Chemical Markup Language, CML.

ONTOLOGY MAPPING

Ontology mapping enables interoperability among different sources in the Semantic
Web. It is required for combing distributed and heterogeneous ontologies. Ontology mapping
transforms the source ontology into the target ontology based on semantic relations. There are
three mapping approaches for combing distributed and heterogeneous ontologies:
1. Mapping between local ontologies.
2. Mapping between integrated global ontology and local ontologies.
3. Mapping for ontology merging, integration, or alignment.
Ontology merge, integration, and alignment can be considered as ontology reuse processes.

Ontology merge is the process of generating a single, coherent ontology from two or
more existing and different ontologies on the same subject. Ontology integration is the
process of generating a single ontology from two or more differing ontologies in different
subjects. Ontology alignment creates links between two original ontologies.

LOGIC AND INFERENCE
Logic is the study of the principles of reasoning. As such, it constructs formal languages for
expressing knowledge, semantics, and automatic reasoners to deduce (infer) conclusions.

Logic forms the foundation of Knowledge-Representation (KR), which has been
applied to Artificial Intelligence (AI) in general and the World Wide Web in particular. Logic
provides a high-level language for expressing knowledge and has high expressive power. In
addition, KR has a well-understood formal semantics for assigning unambiguous meaning to
logic statements.

Predicate (or first-order) logic, as a mathematical construct, offers a complete proof
system with consequences. Predicate logic is formulated as a set of axioms and rules that can
be used to derive a complete set of true statements (or proofs). As a result, with predicate
logic we can track proofs to reach their consequences and also logically analyze hypothetical
answers or statements of truth to determine their validity. Proof systems can be used to

automatically derive statements syntactically from premises. Given a set of premises,

such systems can analyze the logical consequences that arise within the system.
Both RDF and OWL (DL and Lite) incorporate capabilities to express predicate logic

that provide a syntax that fits well with Web languages. They offer a trade-off between
expressive power and computational complexity. Other subsets of predicate logic with
efficient proof systems include rules systems (e.g., Horn Logic or definite logic programs).

The Semantic Web language pyramid shown in Figure 2-2 identifies how the
ontology and logic layers fit together. An automatic reasoning system would be formed on
top of the ontology structure and it would make new inferences through logic and proofs.

The top layer of the stack addresses issues of trust. This component of the Semantic
Web has not progressed far beyond a vision of allowing people to ask questions of the
trustworthiness of the information on the Web, in order to provide an assurance of its quality.

Inference Rules
In logic, a rule is a scheme for constructing valid inferences. These schemes establish
syntactic relations between a set of formulas called premises and an assertion called a
conclusion. New true assertions can be reached from already known ones.

There are two forms of deductively valid argument: modus ponens (Latin for “the
affirming mode”) and modus tollens (the denying mode). For first-order predicate logic, rules
of inference are needed to deal with logical quantifiers.

Related proof systems are formed from a set of rules, which can be chained together
to form proofs, or derivations. If premises are left unsatisfied in the derivation, then the
derivation is a proof of a conditional statement: “if the premises hold, then the conclusion
holds.”

Inference rules may also be stated in this form: (1) some premises; (2) a turnstile
symbol , which means “infers,” “proves,” or “concludes”; and (3) a conclusion. The turnstile
symbolizes the executive power. The implication symbol → indicates potential inference and
it is a logical operator.

For the Semantic Web, logic can be used by software agents to make decisions and
select a path of action. For example, a shopping agent may approve a discount for a customer
because of the rule:

RepeatCustomer(X)→ discount(25%)
Where repeat customers are identified from the company database.

This involves rules of the form “IF (condition), THEN (conclusion).” With only a
finite number of comparisons, we are required to reach a conclusion. This means that the
logic will be tractable and the tools to execute it will be efficient reasoning tools.

In addition, since the logic provides traceable steps in obtaining and backtracking a
conclusion, we can analyze the explanation for the premises and inference rules used to reach
the conclusion. Explanations are useful because they establish validated proofs for the
Semantic Web agents that provide credibility for their results.

Axioms of a theory are assertions that are assumed to be true without proof. In terms
of semantics, axioms are valid assertions. Axioms are usually regarded as starting points for
applying rules of inference and generating a set of conclusions.

Rules of inference, or transformation rules, are rules that one can use to infer a
conclusion from a premise to create an argument. A set of rules can be used to infer any valid
conclusion if it is complete, while never inferring an invalid conclusion, if it is sound.

Rules can be either conditional or biconditional. Conditional rules, or rules of

inference, are rules that one can use to infer the first type of statement from the second, but
where the second cannot be inferred from the first. With biconditional rules, in contrast, both
inference directions are valid.
Conditional Transformation Rules
We will use letters p, q, r, s, etc. as propositional variables.

An argument is Modus ponens if it has the following form (P1 refers to the first
premise; P2 to the second premise: C to the conclusion):
(P1) if p then q
(P2) p
(C) q
Example:
(P1) If Socrates is human then Socrates is mortal.
(P2) Socrates is human.
(C) Socrates is mortal.
Which can be represented as Modus ponens:

[(p → q) ∧ p] → [q]
An argument is Modus tollens if it has the following form:
(P1) if p then q
(P2) not-q
(C) not-p

Example:

(P1) If Socrates is human then Socrates is mortal.
(P2) Socrates is not mortal.
(C) Socrates is not human.

In both cases, the order of the premises is immaterial (e.g., in modus tollens “not-q”
could come first instead of “if p then q”).
Modus tollens

[(p → q)∧￢q] → [￢p]
An argument is a disjunctive syllogism if it has either of the following forms:
(P1) p or q (P1) p or q
(P2) not-p (P2) not-q
(C) q (C) p

The order of the premises is immaterial (e.g., “not-q” could come first instead of “p or q”).

This argument form derives its name from the fact that its major premise is a
“disjunction,” that is, a proposition of the form “p or q.” The propositions p and q are called
the “disjuncts” of the disjunction “p or q.”

In logic, the disjunction “p or q” is interpreted as the claim that not both p and q are
false; that is, that at least one of them is true. Thus a disjunction is held to be true even when
both its disjuncts are true. For example, the proposition “either John ate breakfast this
morning or he went running this morning” is true even if John did both. Of course, the

disjunction will also be true if John only did one of the two. But if he did neither, then

the disjunction is false.
Examples of disjunctive syllogism:
(P1) John ate breakfast or he went running.
(P2) John did not eat breakfast.
(C) John went running.

(P1) John ate breakfast or he went running.
(P2) John did not go running.
(C) John ate breakfast.
Conjunction introduction (or conjunction) is represented as
[(p) ∧ (q)] → [p ∧ q]

 Biconditional Transformation Rules
Biconditional rules, or rules of replacement, are rules that one can use to infer the first type of
statement from the second, or vice versa.

Double negative elimination is represented as

[￢￢p] ↔ [p]
Tautology is represented as
[p] ↔ [p ∨ p]

MONOTONIC AND NONMONOTONIC RULES
If a conclusion remains valid after new information becomes available within predicate logic,
then we refer to this case as a monotonic rule. If, however, the conclusion may become
invalid with the introduction of new knowledge, then the case is called a nonmonotonic rule.

The Semantic Web will express knowledge in a machine accessible way using RDF
and OWL, and then exchange rules across different applications using XMLbased rule
languages. A subset of predicate logic, Horn logic is the basis of monotonic rules.

Nonmonotonic rules are useful where information is unavailable. These rules can be
overridden by contrary evidence presented by other rules. Priorities are helpful to resolve
some conflicts between nonmonotonic rules. The XML-based languages can be used to
represent rules.

DESCRIPTIVE LOGIC
Descriptive logic is a family of logic based on knowledge-representation formalisms that is a
descendant of semantic networks. It can describe the domain in terms of concepts (classes),
roles (properties, relationships), and individuals. Descriptive logic is distinguished by being a
formal semantic that has decidable fragments of FOL and has provisions of inference
services. Descriptive logics allow specifying a terminological hierarchy using a restricted set
of first-order
formulas. They usually have nice computational properties (often decidable and tractable),
but the inference services are restricted.
Inference and Classes
We can make inferences about relationships between classes, in particular subsumption
between classes. Recall that A subsumes B when it is the case that any instance of B must
necessarily be an instance of A.
Inference and Individuals

We can make inferences about the individuals, in particular inferring that particular
individuals must be instances of particular classes. This can be because of subsumption
relationships between classes, or because of the relationships between individuals.

The Unique Name Assumption (UNA) says that any two individuals with different
names are different individuals. Many DL reasoners assume UNA, but OWL semantics does
not make use of the UNA. Instead there are mechanisms in the language (owl:differentFrom
and owl:AllDifferent) that allow us to assert that individuals are different.

Closed and Open Worlds
Reasoning in DLs is monotonic. This means that if we know that x is an instance of A, then
adding more information to the model cannot cause this to become false. We cannot assume
that if we do not know something, then it is false. This is due to the Open World Assumption
(OWA).
Simple Common Logic
Computer-understandable ontologies are represented in logical languages, such as the W3C
OWL and the draft ISO standard, SCL (Simple Common Logic). However, logical languages
are only a means to express content. It is the information being imparted in the statements
that drives how the individual words are selected and sequenced into sentences. It is not the
language (or logic) that makes the difference, but how it is used. Ontology is one way to use
language and logic more effectively.

Simple Common Logic (SCL) is a proposal for a unified semantic framework for
expressing full first-order logical (FFOL) content for transmission on the Web. Simple
Common Logic was recently submitted for ISO standardization as Common Logic, and has
been incorporated into the OMG Ontology Definition Metamodel (ODM) standard. The SCL
extends conventional first-order notations in various ways and is the candidate formalism for
expressing content that is currently represented in both description logics and rule languages.

INFERENCE ENGINES
An expert system has three levels of organization: a working memory, an inference engine,
and a knowledge base. The inference engine is the control of the execution of reasoning rules.
This means that it can be used to deduce new knowledge from existing information.

The inference engine is the core of an expert system and acts as the generic control
mechanism that applies the axiomatic knowledge from the knowledge base to the task-
specific data to reach some conclusion. Two techniques for drawing inferences are general
logic-based inference engines and specialized algorithms.

Many realistic Web applications will operate agent-to-agent without human
intervention to spot glitches in reasoning. Therefore developers will need to have complete
confidence in reasoned otherwise they will cease to trust the results. Doubting unexpected
results makes a reasoned useless. In simple rule-based systems, there are two kinds of
inference, forward and backward chaining.
Forward Chaining
In forward chaining, the data is put into working memory. This triggers rules whose
conditions match the new data. These rules then perform their actions. The actions may add
new data to memory, thus triggering more rules, and so on. This is also called data-directed
inference, because inference is triggered by the arrival of new data in working memory.

Consider iterating continuously though the following set of rules until you reach a
conclusion:

Rule 1: IF A and C THEN F
Rule 2: IF A and E THEN G
Rule 3: IF B THEN E
Rule 4: IF G THEN D

To prove that D is true, given that A and B are true, we start with Rule 1 and go on
down the list until a rule that “fires” is found. In this case, Rule 3 is the only one that fires in
the first iteration. At the end of the first iteration, it can be concluded that A, B, and E are
true. This information is used in the second iteration.

In the second iteration, Rule 2 fires adding the information that G is true. This extra
information causes Rule 4 to fire, proving that D is true.

This is the method of forward chaining, where one proceeds from a given situation
toward a desired goal, adding new assertions along the way. This strategy is appropriate in
situations where data are expensive to collect and few are available.
Full First-Order Logic Inference Engines
Using full first-order logic for specifying axioms requires a full-fledged automated theorem
proved. First-order logic is semi decidable and inference is computationally intractable for
large amounts of data and axioms.

This means that in an environment such as the Web, these programs would not scale
up for handling huge amounts of knowledge. Besides, full first theorem proving would mean
maintaining consistency throughout the Web, which is impossible.

The approach taken by CYCORPs CYC is different. Their approach consists of
roughly 1 MB of axioms using the first-order framework. The CYC organizes its axioms in
contexts and maintains consistency just for one context, and it limits deductions to a few
steps. Compared to future Web architecture, CYC is still small.

An interactive theorem prover is not suitable for automated agents since they rely on
user interaction. However, they may be useful to construct proofs, which can be validated by
automated agents.

 RDF INFERENCE ENGINE
This section presents the elements of a simple RDF inference engine. RDF is a system meant
for stating meta-information through triples composed of a subject, a property, and an object.
The subject and object can be either a designation like a URL or a set of another triple.
Triples form a simple directed graph.

Figure 8-1 shows a simple RDF example. The first triple says that Smith owns a
computer and the second says that there is a computer made by Apple. The third drawing,
however, is composed of two triples, and it says that Smith owns a computer made by Apple.

Suppose these triples were placed in a database. Now we can conduct a query as in
Figure 8-2.

In the first query, the question is who owns a computer? The answer is “Smith.” In the
second query, the question is what maker of computer are defined in the database? The third
query, however asks who owns a computer and what is the make of that computer?

The query is a graph containing variables that can be matched with the graph in
Figure 8-1. Should the graph in the database be more extended, it would have to be matched
with a sub graph. So, generally for executing an RDF query what has to be done is called
“subgraph matching.”

Following the data model for RDF the two queries are in fact equal because a
sequence of statements is implicitly a conjunction. Figure 8-3 illustrates this.

Let us make a rule: If X owns a computer, then X must buy software. How do we

represent such a rule? Figure 8-3 gives the graph representation of a rule.
The nodes of the rule form a triple set. Here there is one antecedent, but there could

be more. There is only one consequent. (Rules with more than one consequent can be reduced
to rules with one consequent.) Figure 8-4 gives a query that will match with the consequent
of the rule.

The desired answer is John must buy software. The query of Figure 8-4 is matched
with the consequent of the rule. Now an action has to be taken: The antecedents of the rule
have to be added to the database with the variables replaced with the necessary values
(substitution). Then the query has to be continued with the antecedent of the rule.

The question now is Who owns a computer? This is equal to a query described earlier.
A rule sub graph is treated differently from nonfuel subgraphs.

A triple can be modeled as a predicate: triple(subject, property, object). A set of

triples equals a list of triples and a connected graph is decomposed into a set of triples. For
our example this gives

Triple(John, owns, computer).
Triple(computer, make, Apple).

This sequence is equivalent to: [Triple(John, owns, computer). Triple(computer,
make, Apple).]
From Figure 8-2 the triples are

Triple(?who, owns, computer).
Triple(computer, make, ?what).

This sequence is equivalent to: [Triple(?who, owns, computer). Triple(computer,
make, ?what).]

From Figure 8-3 the triple is Triple([Triple(X, owns, computer)], implies,
[Triple(X, must buy, software)]).
From Figure 8-4 the triple is Triple(?who, must buy, software).

A unification algorithm for RDF can handle sub graph matching and embedded rules
by the term “sub graph matching with rules.” The unification algorithm divides the sequence
of RDF statements into sets where each set constitutes a connected sub graph. This is called a
triple set that is done for the database and for the query. Then the algorithm matches each
tripleset of the query with each tripleset of the database. Each triple of a triple set of the query
is matched with each triple of the tripleset of the database. All the triples of the query set
must be unified with a triple from the database. If one triple is a rule, then unification will use
the mechanism for rules.

The modeling of a triple by owns(John, computer) is not correct because the predicate
can be a variable too.

The unication algorithm can be declared by triples and rules. It can do inference about
properties of graphs. A complex description of the nodes is possible because each node can
be a graph itself.
Agents
Agents are pieces of software that work autonomously and proactively. In most cases, an
agent will simply collect and organize information. Agents on the Semantic Web will receive
some tasks to perform and seek information from Web resources, while communicating with

other Web agents, in order to fulfill its task. Semantic Web agents will utilize metadata,
ontologies, and logic to carry out its tasks.

Today, computers and small devices are being used to access, from any location, an
ever-increasing flood of Web information. As the size of the Web expands, and with it its
information content, it is becoming more and more difficult to search, access, maintain, and
manage network resources. Creating machine-processable semantics could alleviate some of
these difficulties. The resulting Semantic Web applications could provide intelligent access to
heterogeneous, distributed information, enabling software products (and agents) to mediate
between user need and the information sources available.

MODULE IV
Semantic web applications,services and technology

Semantic web services:
Web Services are self-contained, self-described, component applications that can be

published, located, and invoked across the Web. They perform functions that can be anything
from simple requests to complex business processes involving multiple simple services. Once
a Web Service is deployed, other applications can discover and invoke the service. At
present, Web Services require human interaction for identification and implementation.

Tim Berners-Lee has suggested that the integration of Web Services and the Semantic
Web could offer significant performance improvement for Web applications. Integration
could combine the business logic of Web Services with the Semantic Web’s meaningful
content. There are several areas where the two could work well together. For example, the
current technologies for discovery (Universal Description, Discovery and Integration, UDDI),
binding (Web Services
Description Language, WSDL), and messaging (Simple Object Access Protocol, SOAP)
technologies could use OWL to provide an ontology for automatic Semantic Web Services
thereby allowing interaction with Web business rules’ engines.

SEMANTIC WEB APPLICATIONS
Semantic Web applications are those web-based applications that take advantage of semantic
content: content that includes not only information, but also metadata, or information about
information. The Semantic Web can be used for more effective discovery, automation,
integration, and reuse across various applications.

The Semantic Web will provide an infrastructure not just for Web pages, but
databases, services, programs, sensors, and personal devices. Software agents can use this
information to search, filter, and repackage information. The ontology and logic languages
will make information machine readable and power a new generation of tools.

Web technologies can link information easily and seamlessly. The majority of
network systems now have Web servers, and the Web interfaces make them seem part of the
same world of information. Despite this, transferring content between Web applications is
still difficult.

The Semantic Web can address and improve the linking of databases, sharing content
between applications, and discovery and combination of Web Services.

Under the current Web architecture, linkages between dissimilar systems are provided
by costly, tailored software. Again and again, special purpose interfaces must be written to
bring data from one systems into another. Applications that run in a given company involve a
huge number of ways they can be linked together. That linking requires a lot of custom code.
Use of XML can help, but the problem of effectively exchanging data remains. For every pair
of applications someone has to create an “XML to XML bridge.”

The problem is that different databases are built using different database schemas, but
these schemas are not made explicit. Just as older database systems suddenly became
compatible by adopting a consistent relational model, so unstructured Web data, or XML
schema definitions, can adopt a relational model.

The use of Resource Description Framework (RDF) in addition to XML can be
appropriate when information from two sources need to be merged or interchanged. It is
possible to concatenate the files joining on defined terms to correspond to the same Universal

Resource Indicators (URIs). When you want to extend a query on one RDF file to

include constraints from another, you just add in the constraints as part of the merging.
Where XML is made up of elements and attributes, RDF data is made up of statements where
each statement expresses the value of one property.

The Semantic Web is bringing to the Web a number of capabilities, such as allowing
applications to work together in a decentralized system without a human having to custom
handcraft every connection. The business market for this integration of data and programs is
huge, and we believe the companies who choose to start exploiting Semantic Web
technologies will be the first to reap the rewards.

Some opportunities for Semantic Web applications include Semantic Web Services,
Semantic Search, e-Learning, Semantic Web and Bio-Informatics, Semantics- based
Enterprise Application and Data Integration, and Knowledge Base. We will discuss these in
the following sections.

SEMANTIC WEB SERVICES
Semantic Web Services can bring programs and data together. Just as databases cannot be
easily integrated on the current Web without RDF, the same applies to programs.
Unfortunately, many e-business applications particularly in businessto- business (B2B)
interactions have difficulty loading someone else’s program to run locally.

Consider the case of a company that wishes to purchase parts from a vendor, arrange
shipping from a large freight company, and have those parts delivered to one of several
manufacturing locations based on which plant has the most capacity at the time of the
delivery. Further, they would like this deal to be brokered on the Web with the minimum
amount of human interaction. These programs that execute this brokering may be running on
special purpose machines and/or behind security and firewall protections. How can all these
programs interoperate on the Web to provide protocols and descriptions of the “services” that
these various
programs offer?

Web Services are self-contained, self-described, component applications invoked
across the Web to perform complex business processes. Once a Web Service is deployed,
other applications can discover and invoke the service. At present, Web Services require
human interaction in order to identify and implement.

Tim Berners-Lee has suggested that the integration of Web Services and the Semantic
Web could be done in such a way as to combine the business logic of Web Services with the
Semantic Web’s meaningful content. There are several areas where the current technologies
for discovery (UDDI or Universal Description, Discovery, and Integration), binding (WSDL
or Web Services Description Language), and messaging (SOAP or Simple Object Access
Protocol) could use OWL to provide an ontology for automatic SemanticWeb Services
thereby allowing greater interaction with Web business rules’ engines.

The vision for Semantic Web Services is to automate the discovery, invocation,
composition, and monitoring of Web Services through the use of machine processing. Web
sites will be able to use a set of classes and properties by declaring and describing an
ontology of services. Web Ontology Language for Services (called OWL-S) has been
designed to meet this goal.

SEMANTIC SEARCH
Semantic search methods can augment and improve traditional search results by using, not
just words, but concepts and logical relationships. There are two approaches to improving

search results through semantic methods: (1) the direct use of Semantic Web metadata and
(2) Latent Semantic Indexing (LSI).

The Semantic Web will provide more meaningful metadata about content, through the
use of RDF and OWL documents that will help to form the Web into a semantic network. In
a semantic network, the meaning of content is better represented and logical connections are
formed between related information.

However, most semantic-based search engines suffer increasingly difficult
performance problems because of the large and rapidly growing scale of the Web. In order
for semantic search to be effective in finding responsive results, the network must contain a
great deal of relevant information. At the same time, a large network creates difficulties in
processing the many possible paths to a relevant solution. We once again find ourselves
facing a basic trade-off between finding the minimum necessary expressive power and the
maximum possible reasoning capability for the Semantic Web.

 e-LEARNING
The big question in the area of educational systems is what is the next step in the evolution of
e-learning? Are we finally moving from scattered applications to a coherent collaborative
environment? How close we are to the vision of the Educational Semantic Web and what do
we need to do in order to realize it?

On the one hand, we wish to achieve interoperability among educational systems and
on the other hand, to have automated, structured, and unified authoring. The Semantic Web is
the key to enabling the interoperability by capitalizing on (1) semantic conceptualization and
ontologies, (2) common standardized communication syntax, and (3) large-scale integration
of educational content and usage.

The RDF describes objects and their relationships. It allows easy reuse of information
for different devices, such as mobile phones and PDAs, and for presentation to people with
different capabilities, such as those with cognitive or visual impairments.

It is possible that in the near future students will be able to extract far more data from
a networked computer or wireless device, far more efficiently. Based on a few specific search
terms, library catalogues could be scanned automatically and nearest library shelf marks
delivered immediately to students, alongside multimedia and textual resources culled from
the Web itself. Students could also be directed to relevant discussion lists and research
groups.

By tailored restructuring of information, future systems will be able to deliver content
to the end-user in a form applicable to them, taking into account users’ needs, preferences,
and prior knowledge. Much of this work relies on vast online databases and thesauri, such as
wordnet, which categorize synonyms into distinct lexical concepts. Developing large
multimedia database systems makes materials as useful as possible for distinct user groups,
from schoolchildren to university lecturers. Students might, therefore, search databases using
a simple term, while a lecturer might use a more scientific term thus reflecting scaling in
complexity.

The educational sector can also use the Internet Relay Chat (IRC)
(http://www.irc.org/) a tool that can be used by the Semantic Web. The IRC is a chat protocol
where people can meet on channels and talk to each other. The Semantic Web community is
enhancing this capability by writing robots that can help to log the chat when members are
away. It can also assist with meetings, discussions, and recording of results.

The IRC and related tools could work well within education, for project discussion,

remote working, and collaborative document creation. Video-conferencing at schools is
increasingly becoming useful in widening the boundaries for students. The incorporation of
Semantic Web technologies could create the ability to work across distributed locations in
communities of learning and enable content creation outside of the classroom.

SEMANTIC BIOINFORMATICS
The Semantic Web could unlock a great deal of scientific data contained within disparate
applications’ formats otherwise limited by institutional factors. Life scientists, in particular,
could find the Semantic Web a useful tool. The World Wide Web Consortium recently
announced the formation of the Semantic Web Health Care and Life Sciences Interest Group
(HCLSIG) aimed to help life scientists tap the potential benefits of using Semantic Web
technology by developing use cases and applying standard Semantic Web specifications to
healthcare and life sciences problems.

The initial foundation and early growth of theWeb was based in great part on its

adoption by the high-energy physics community when six high-energy physics Web sites
collaborated allowing their participating physicists to interact on this new network of
networks. A similar critical mass in life sciences could occur if a half dozen ontologies for
drug discovery were to become available on the Semantic Web.

Life science is a particularly suitable field for pioneering the Semantic Web. For
example, in the area of drug discovery, many databases and information systems are used by
drug researchers on a global scale. In this regard, the Biological Pathways Exchange
(http://www.biopax.org/) is developing a standard data exchange format for metabolic,
signaling, genetic regulatory, and genetic pathway information as an example.

 KNOWLEDGE BASE
In a number of parallel efforts, knowledge systems are being developed to provide semantic-
based and context-aware systems for the acquisition, organization, processing, sharing and
use of the knowledge embedded in multimedia content. Ongoing research aims to maximize
automation of the complete knowledge lifecycle and to achieve semantic interoperability
between Web resources and services.

In one particularly interesting application, Cycorp intends to sell products and
services using its inference engine, which has been designed to work with the Cyc
Knowledge. Cycorp provides a reference Cyc Server executable for Intel-based Linux and for
Windows 2000.

OpenCyc is the open source version of the Cyc technology, the world’s largest and
most complete general knowledge base and common sense reasoning engine. Cycorp, the
builders of Cyc, have set up an independent organization Open- Cyc.org, to disseminate and
administer OpenCyc. OpenCyc can be used as the basis for a wide variety of intelligent
applications, such as speech understanding (using the KB to prune implausible choices via
common sense, discourse context, and prosodics), database integration and consistency-
checking, rapid development of an ontology, and email prioritizing, routing, summarizing,
and annotating.

XML-BASED WEB SERVICES
Web Services provide a standard means of interoperating between different software
applications running on a variety of platforms. The XML provides the extensibility and
language neutrality that is the key for standard-based interoperability of Web Services.

Web Service discovery and composition is led by Universal Description Discovery
and Integration (UDDI) developed by IBM and Microsoft. Well accepted standards like Web
Services Description Language (WSDL) for binding and Simple Object Access Protocol
(SOAP) for messaging make it possible to dynamically invoke Web services.

Web Service Architecture requires discrete software agents that must work together to
implement functionality. Furthermore, the agents do not all operate in the same processing
environment so they must communicate by protocol stacks that are less reliable than direct
code invocation. This requires developers to consider the unpredictable latency of remote
access, and take into account issues of partial failure and concurrency.

In XML-based Web Services, an agent sends and receives messages based upon their
architectural roles. If a requester wishes to make use of a provider’s Web Service, he uses a
requester agent to exchange messages with the provider agent. In order for this message
exchange to be successful, the requester and the provider must first agree on both the
semantics and the mechanics of the message exchange.

The message exchange mechanics are documented using WSDL. The service
description is a specification that can be processed by a machine using message formats, data
types, and protocols that are exchanged between the requester and provider. It also specifies
the network location of the provider.

CREATING AN OWL-S ONTOLOGY FOR WEB SERVICES
Creating an OWL-S based Ontology for a Web Service requires five steps:
1. Describe individual programs: describe the individual programs that comprise the service.
The process model provides a declarative description of a program’s properties.
2. Describe the grounding for each atomic process: relate each atomic process to its
grounding.
3. Describe compositions of the atomic processes: describe the composite process that is a
composition of its atomic processes.
4. Describe a simple process: describe a simple process for the service (optional).
5. Profile description: provide a declarative advertisement for the service. It is partially
populated by the process model.

SEMANTIC SEARCH TECHNOLOGY
As Web ontology becomes more advanced, using RDF and OWL tags will offer semantic
opportunities for search.
Searching Techniques
Semantic search deals with concepts and logical relationships. If we examine the practical
problems of semantic search, we will find that the search tree faces an incompleteness of
logic resulting in the Incompleteness Problem, or the Halting Problem.

Inference can be viewed as a sequence of logical deductions chained together. At each
point along the way, there might be different ways to reach a new deduction. So, in effect,
there is a branching set of possibilities for how to reach a correct solution. This branching set
can spread out in novel ways. For example, you might want to try to determine “Whom does
Kevin Bacon know?” based on information about his family relationships, his movies, or his

business contacts. So, there is more than one path to some conclusions. This results in

a branching set of possibilities. Therefore, the inference in our system is a kind of search
problem, displayed as a search tree.

It is possible to start at the top of the tree, the root, or with the branches. Taking the
top of the tree, the query can be asked, Whom does Kevin Bacon know? Each step down
from parent-to-child nodes in this tree can be viewed as one potential logical deduction that
moves toward trying to assess the original query using this logical deductive step. The fan out
of possibilities can be viewed as a branching tree, getting bushier and deeper. Each of the
successful steps we take ends up becoming a parent node from which we seek additional
child nodes. Eventually, a list of people “whom Kevin Bacon actually knows?” will be
accumulated.

Imagine that each node in this tree represents a statement or fact to prove. Each link
from a parent node to a child node represents one logical statement. Now the problem is that
we have a big tree of possibilities and this could result in any search being limited to
incomplete results.

In a complex logical system, there is an arbitrarily large number of potential proofs.
Some of the potentially factual nodes may be arbitrarily long, and it may be uncertain if a
determination of whether or not it is factual can be made (i.e., it may be uncertain if there is a
proof). G¨odel proved in the 1930s that any sufficiently complicated logical system is
inherently incomplete (Undecidable). In other words, there are statements that cannot be
logically proven. His argument in proving undecidability is also related to the Halting
Problem.

The Halting Problem is a decision problem that can be informally stated as follows:
Given a description of an algorithm and a description of its initial arguments, determine
whether the algorithm, when executed with these arguments, ever halts (the alternative is that
it runs forever without halting). Alan Turing proved in 1936 that there is no general method
or algorithm that can solve the halting problem for all possible inputs.

The importance of the Halting Problem lies in the fact that it was the first problem to
be proved undecidable. Subsequently, many other such problems have been described; the
typical method of proving a problem to be undecidable is to reduce it to the Halting Problem.

The Halting Problem implies that certain algorithms will never end in a definite
answer. When you consider the Web, you referring to millions of facts and tens of thousands
of rules that can chain together in arbitrarily complicated and interesting ways; so the space
of potential proofs is infinite and the tree becomes logically infinite. Due to this, you will run
into some inherent incompleteness issues; for example, in a complex network, you cannot
simply look at every possible factual statement, determine its truthfulness, and collect a
complete set of all such results.

You run into incompleteness because the search tree is too large. So our approach
must be to search only portions of the tree. There are well-known strategies for how one
addresses search problems like this. One strategy is to search the tree in a depth-first fashion.

A depth-first search would start at the top of the tree and go as deeply as possible
down some path, expanding nodes as you go, until you find a dead end. A dead end is either a
goal (success) or a node where you are unable to produce new children. So the system cannot
prove anything beyond that point.

Let us walk through a depth-first search and traverse the tree. Start at the top node and
go as deeply as possible:
1. Start at the highest node.

2. Go as deeply as possible down one path.
3. When you run into a dead-end (i.e., a false statement), back-up to the last node that you
turned away from. If there is a path there that you have not tried, go down it. Follow this
option until you reach a dead-end or a goal (a true statement with no child nodes).
4. If this path leads to another dead-end, go back up a node and try the other branches.
5. This path leads to a goal. In other words, this final node is a positive result to the query. So
you have one answer. Keep searching for other answers by going up a couple more nodes and
then down a path you have not tried.
6. Continue until you reach more dead-ends and have exhausted search possibilities.

The advantage of depth-first search is that it is a very algorithmically efficient way to
search trees in one format. It limits the amount of space that you have to keep for
remembering the things you have not looked at yet. All you have to remember is the path
back up. The disadvantage with depth-first search is that once you get started down some
path, you have to trace it all the way to the end.

Another strategy for searching is a breadth-first search. Here you search layer by
layer. First, you try to do all of the zero-step proofs, then you try to do all of the one-step
proofs, and so on. The advantage of breadth-first search is that you are guaranteed to get the
simplest proofs before you get anything that is strictly more complicated. This is referred to
as the Ockham’s Razor benefit. If there is an n-step proof, you will find it before you look at
any n + 1-step proofs. The disadvantage of breadth-first search becomes apparent when you
encounter huge deep trees. We also have huge bushy trees where you could have thousands,
or tens of thousands, of child nodes. Another disadvantage of breadth-first searching is the
amount of space you have to use to store what you have not examined as yet. So, if the third
layer is explosively large, you would have to store all of the third level results before you
could even look at them. With a breadth-first search, the deeper you go into the tree, the more
space you will need. So, you find that each of the two traditional algorithms for search,
depth-first and breadth-first, are going to run into problems with large systems.

There are two basic classes of search algorithms used to attempt to overcome the
incompleteness and halting limitations: uninformed and informed. Uninformed, or blind,
searches are those that have no information about the number of steps or the path cost from
the current state to the goal. These searches include: depth-first, breadth-first, uniform-cost,
depth-limiting and iterative deepening search. Informed, or heuristic, searches are those that
have information about the goal; this information is usually either an estimated path cost to it
or estimated number of steps away from it. This information is known as the search agent
heuristic. It allows informed searches to perform better than the blind searches and makes
them behave in an almost “rational” manner. These searches include best-first, hill-climbing,
beam, A*, and IDA* (iterative deepening A*) searches. These methods can provide
significant improve in search.

WEB SEARCH AGENTS
While Web search engines are powerful and important to the future of the Web, there is
another form of search that is also critical: Web search agents. A Web search agent will not
perform like a commercial search engine. Search engines use database lookups from a
knowledge base.

In the case of the Web search agent, the Web itself is searched and the computer
provides the interface with the user. The agent’s percepts are documents connected through
the Web utilizing HTTP. The agent’s actions are to determine if its goal of seeking a Web site

containing a specified target (e.g., keyword or phrase), has been met and if not, find other
locations to visit. It acts on the environment using output methods to update the user on the
status of the search
or the end results.

What makes the agent intelligent is its ability to make a rational decision when given
a choice. In other words, given a goal, it will make decisions to follow the course of actions
that would lead it to that goal in a timely manner.

An agent can usually generate all of the possible outcomes of an event, but then it will
need to search through those outcomes to find the desired goal and execute the path
(sequence of steps) starting at the initial or current state, to get to the desired goal state. In the
case of the intelligent Web search agent, it will need to utilize a search to navigate through
the Web to reach its goal. Building an intelligent Web search agent requires mechanisms for
multiple and combinational keyword searches, exclusion handling, and the ability to self-seed
when it exhausts a search space. Given a target, the Web search agent should proceed to look
for it through as many paths as are necessary. This agent will be keyword based. The method
advocated is to start from a seed location (user provided) and find all other locations linked in
a tree fashion to the root (seed location) that contains the target.

The search agent needs to know the target (i.e., keyword or phrase), where to start,
how many iterations of the target to find how long to look (time constraint), and what
methods should determine criteria for choosing paths (search methods). These issues are
addressed in the software.

Implementation requires some knowledge of general programming, working with
sockets, the HTTP, HTML, sorting, and searches. There are many languages with Web-based
utilities, advanced application programming interfaces (APIs), and superior text parsing
capabilities that can be used to write a Web search agent. Using a more advanced, efficient
sorting algorithm will help improve the performance of the Web search agent.

The Web search agent design consists of four main phases: initialization, perception,
action, and effect. In the initialization phase, the Web search agent should set up all variables,
structures, and arrays. It should also get the base information it will need to conduct the hunt
for the target, the goal, a place to start, and the method of searching. The perception phase is
centered on using the knowledge provided to contact a site and retrieve the information from
that
location. It should identify if the target is present and should identify paths to other Universal
Resource Locator (URL) locations. The action phase takes all of the information that the
system knows and determines if the goal has been met (the target has been found and the hunt
is over).

If the hunt is still active it must make the decision on where to go next. This is the
intelligence of the agent, and the method of search dictates how “smart” the Web agent will
be. If a match is found, the hunt is complete, and it provides output to the user. The Web
search agent moves from the initialize phase to a loop consisting of the perception, action,
and effect phases until the goal is achieved or cannot be achieved.

SEMANTIC METHODS

Semantic search methods augment and improve traditional search results by using not
just words, but meaningful concepts. Several major companies are seriously addressing the
issue of semantic search. There are two approaches to improving search results through
semantic methods: (1) LSI and (2) Semantic Web documents

MODULE V
SOCIAL NETWORK ANALYSIS AND SEMANTIC WEB

How do we rank pages on the Web? How does HIV spread? How do we explain the success
or failure of entrepreneurs in terms of their business contacts? What is the advantage of
terrorist networks built from loosely coupled cells?

All these questions have in common that they can be rephrased using the vocabulary
of network analysis, a branch of sociology and mathematics that is increasingly applied also
to questions outside the social domain. In the following we give an introduction to the main
theory and methods of Social Network Analysis, which will be applied later to the analysis of
social networks (Section 8) as well as semantic networks (Section 9). By no means do we
expect to provide a complete coverage of any topic involved. For a more encyclopedic
treatment of network analysis we refer the reader to the social network analysis reference of
Wasserman and Faust [WFIG94].

While Social Science is often looked upon by researchers from the exact sciences as
vague and thus necessarily inconclusive, network analysis should appeal to all as one of the
most formalized branches of Social Science. Most of these formalisms are based on the
simple nodes and edges representations of social networks to which a large array of measures
and statistics can be applied. While some of the more sophisticated of these methods require a
deep mathematical understanding to be applied correctly, the simple concepts discussed in
this Chapter should be easily understood by anyone with an advanced level of secondary-
school mathematics.

Social Network analysis
Social Network Analysis (SNA) is the study of social relations among a set of actors. The key
difference between network analysis and other approaches to social science is the focus on
relationships between actors rather than the attributes of individual actors. Network analysis
takes a global view on social structures based on the belief that types and patterns of
relationships emerge from individual connectivity and that the presence (or absence) of such
types and patterns have substantial effects on the network and its constituents. In particular,
the network structure provides opportunities and imposes constraints on the individual actors
by determining the transfer or flow of resources (material or immaterial) across the network.

The focus on relationships as opposed to actors can be easily understood by an
example. When trying to predict the performance of individuals in a scientific community by
some measure (say, number of publications), a traditional social science approach would
dictate to look at the attributes of the researchers such as the amount of grants they attract,
their age, the size of the team they belong to etc. A statistical analysis would then proceed by
trying to relate these attributes to the outcome variable, i.e. the number of publications.

In the same context, a network analysis study would focus on the interdependencies
within the research community. For example, one would look at the patterns of relationships
that scientists have and the potential benefits or constraints such relationships may impose on
their work. For example, one may hypothesize that certain kinds of relationships arranged in
a certain pattern may be beneficial to performance compared to the case when that pattern is
not present. The patterns of relationships may not only be used to explain individual
performance but also to hypothesize their impact on the network itself (network evolution).
Attributes typically play a secondary role in network studies as control variables.

SNA is thus a different approach to social phenomena and therefore requires a new set

of concepts and new methods for data collection and analysis. Network analysis provides a
vocabulary for describing social structures, provides formal models that capture the common
properties of all (social) networks and a set of methods applicable to the analysis of networks
in general. The concepts and methods of network analysis are grounded in a formal
description of networks as graphs. Methods of analysis primarily originate from graph theory
as these are applied to the graph representation of social network data. (Network analysis also
applies statistical and probabilistic methods and to a lesser extent algebraic techniques.)

It is interesting to note that the formalization of network analysis has brought much of
the same advantages that the formalization of knowledge on the Web (the SemanticWeb) is
expected to bring to many application domains. Previously vaguely defined concepts such as
social role or social group could now be defined on a formal model of networks, allowing to
carry out more precise discussions in the literature and to compare results across studies.

The methods of data collection in network analysis are aimed at collecting relational
data in a reliable manner. Data collection is typically carried out using standard
questionnaires and observation techniques that aim to ensure the correctness and
completeness of network data. Often records of social interaction (publication databases,
meeting notes, newspaper articles, documents and databases of different sorts) are used to
build a model of social networks.

 Development of Social Network Analysis
The field of Social Network Analysis today is the result of the convergence of several
streams of applied research in sociology, social psychology and anthropology.

Many of the concepts of network analysis have been developed independently by
various researchers often through empirical studies of various social settings. For example,
many social psychologists of the 1940s found a formal description of social groups useful in
depicting communication channels in the group when trying to explain processes of group
communication. Already in the mid-1950s anthropologists have found network
representations useful in generalizing actual field observations, for example when comparing
the level of reciprocity in marriage and other social exchanges across different cultures.

Some of the concepts of network analysis have come naturally from social studies. In
an influential early study at the Hawthorne works in Chicago, researchers from Harvard
looked at the workgroup behavior (e.g. communication, friendships, helping, controversy) at
a specific part of the factory, the bank wiring room [May33]. The investigators noticed that
workers themselves used specific terms to describe who is in “our group”. The researchers
tried to understand how such terms arise by reproducing in a visual way the group structure
of the organization as it emerged from the individual relationships of the factory workers (see
Figure 2.1).2 In another study of mixed-race city in the Southern US researchers looked at the
network of overlapping “cliques” defined by race and age [WL41].3 They also went further
than the Hawthorne study in generating hypotheses about the possible connections be
between cliques. (For example, they noted that lower-class members of a clique are usually
only able to connect to higher-class members of another clique through the higher-class
members of their own clique.)

Despite the various efforts, each of the early studies used a different set of concepts
and different methods of representation and analysis of social networks. However, from the
1950s network analysis began to converge around the unique world view that distinguishes
network analysis from other approaches to sociological research. (The term “social network”

has been introduced by Barnes in 1954.) This convergence was facilitated by the

adoption of a graph representation of social networks usually credited to Moreno. What
Moreno called a sociogram was a visual representation of social networks as a set of nodes
connected by directed links. The nodes represented individuals in Moreno’s work, while the
edges stood for personal relations. However, similar representations can be used to depict a
set of relationships

Figure : Illustrations from an early social network study at the Hawthorne works of Western
Electric in Chicago. The upper part shows the location of the workers in the wiring room,
while the lower part is a network image of fights about the windows between workers (W),
soldiers (S) and inspectors (I) between any kind of social unit such as groups, organizations,

nations etc. While 2D and 3D visual modeling is still an important technique of network
analysis, the sociogram is honored mostly for opening the way to a formal treatment of
network analysis based on graph theory.

The following decades have seen a tremendous increase in the capabilities of network
analysis mostly through new applications. SNA gains its relevance from applications and
these settings in turn provide the theories to be tested and greatly influence the development
of the methods and the interpretation of the outcomes. For example, one of the relatively new
areas of network analysis is the analysis of networks in entrepreneurship, an active area of
research that builds and contributes to organization and management science. The
vocabulary, models and methods of network analysis also expand continuously through
applications that require to handle ever more complex data sets. An example of this process
are the advances in dealing with longitudinal data. New probabilistic models are capable of
modelling the evolution of social networks and answering questions regarding the dynamics
of communities. Formalizing an increasing set of concepts in terms of networks also
contributes to both developing and testing theories in more theoretical branches of sociology.

The increasing variety of applications and related advances in methodology can be
best observed at the yearly Sunbelt Social Networks Conference series, which started in
1980.4 The field of Social Network Analysis also has a journal of the same name since 1978,
dedicated largely to methodological issues.5 However, articles describing various
applications of social network analysis can be found in almost any field where networks and
relational data play an important role.

While the field of network analysis has been growing steadily from the beginning,
there have been two developments in the last two decades that led to an explosion in network
literature. First, advances in information technology brought a wealth of electronic data and
significantly increased analytical power. We examine the possibilities of using electronic data
for network analysis in Chapter 3. Second, the methods of SNA are increasingly applied to
networks other than social networks such as the hyperlink structure on the Web or the electric
grid. This advancement brought forward primarily by physicists and other natural scientists—
is based on the discovery that many networks in nature share a number of commonalities with
social networks. In the following, we will also talk about networks in general, but it should be
clear from the text that many of the measures in network analysis can only be strictly
interpreted in the context of social networks or have very different interpretation in networks
of other kinds.

 Electronic sources for network analysis
From the very beginning of the discipline collecting data on social networks required a
certain kind of ingenuity from the researcher. First, social networks have been studied by
observation. The disadvantage of this method is the close involvement of the researcher in the
process of data collection. Standardized surveys minimize (but do not completely eradicate)
the influence of the observer but they rely on an active engagement of the population to be
studied. Unfortunately, as all of us are flooded these days by surveys of all kinds, achieving a
high enough response rate for any survey becomes more and more problematic. In some
settings such as within companies surveys can be forced on the participants, but this casts
serious doubts on whether the responses will be spontaneous and genuine. Worse yet,
observations and surveys need to be repeated multiple times if one would like to study
network dynamics in any detail.

Data collection using these manual methods are extremely labor intensive and can
take up to fifty per cent of the time and resources of a project in network analysis. Oftentimes

the effort involved in data collection is so immense that network researchers are

forced to reanalyze the same data sets over and over in order to be able to contribute to their
field.

Network analysts looking for less costly empirical data are often forced to look for
alternatives. A creative solution to the problem of data collection is to reuse existing
electronic records of social interaction that were not created for the purposes of network
analysis on the first place. Scientific communities, for example, have been studied by relying
on publication or project databases showing collaborations among authors or institutes
[BJN+02, GM02]. Official databases on corporate technology agreements allow us to study
networks of innovation [Lem03], while newspaper archives are a source of analysis for
studies on topics ranging from the role of social-cognitive networks in politics [vAKOS06] to
the structure of terror organizations [Kre02]. These sources often support dynamic studies
through historical analysis. Nevertheless, the convenience comes at a price: access to
publication and patent databases, media archives, legal and financial records often carries a
significant price tag.

However, there is one data source that is not only vast, diverse and dynamic but also
free for all: the Internet. In the following, we look at a sample of works from the rapidly
emerging field of e-social science. Common to these studies is that they rely entirely on data
collected from electronic networks and online information sources, which allows a complete
automation of the data collection process. None of these works rely on commercial databases
and yet many of them are orders of magnitude larger than studies based on data collected
through observation or surveys. They represent a diversity of social settings and a number of
them also exploit the dynamics of electronic data to perform longitudinal analysis. We will
spend more attention on methods of social network extraction from the Web that we use in
our analysis of the Semantic Web community.

There are limits of course to the potential of e-social science. Most trivially, what is
not on the Web cannot be extracted from the Web, which means that there are a number of
social settings that can only be studied using offline methods. There also technological limits
to the accuracy of any method that relies on Information Extraction. For these reasons it is
natural to evaluate our methods before using them for network analysis.

 Electronic discussion networks
One of the foremost studies to illustrate the versatility of electronic data is a series of works
from the Information Dynamics Labs of Hewlett-Packard.

Tyler, Wilkinson and Huber man analyze communication among employees of their
own lab by using the corporate email archive [TWH03]. They recreate the actual discussion
networks in the organization by drawing a tie between two individuals if they had exchanged
at least a minimum number of total emails in a given period, filtering out one-way
relationships. Tyler et al. find the study of the email network useful in identifying leadership
roles within the organization and finding formal as well as informal communities. (Formal
communities are the ones dictated by the organizational structure of the organization, while
informal communities are those that develop across organizational boundaries.) The authors
verify this finding through a set of interviews where they feed back the results to the
employees of the Lab.

Wu, Huberman, Adamic and Tyler use this data set to verify a formal model of
information flow in social networks based on epidemic models [WHAT04]. In yet another
study, Adamic and Adar revisits one of the oldest problems of network research, namely the
question of local search: how do people find short paths in social networks based on only

local information about their immediate contacts? Their findings support earlier

results that additional knowledge on contacts such as their physical location and position in
the organization allows employees to conduct their search much more efficiently than using
the simple strategy of always passing the message to the most connected neighbor. Despite
the versatility of such data, the studies of electronic communication networks based on email
data are limited by privacy concerns. For example, in the HP case the content of messages
had to be ignored by the researchers and the data set could not be shared with the community.

Public forums and mailing lists can be analyzed without similar concerns. Starting
from the mid-nineties, Marc Smith and colleagues have published a series of papers on the
visualization and analysis of USENET newsgroups, which predate Web-based discussion
forums (see the author’s homepage or the book [Smi99]). In the work of Peter Gloor and
colleagues, the source of these data for analysis is the archive of the mailing lists of a
standard setting organization, the World Wide Web Consortium (W3C) [GLDZ03]. The
W3C —which is also the organization responsible for the standardization of Semantic Web
technologies—is unique among standardization bodies in its commitment to transparency
toward the general public of the Internet and part of this commitment is the openness of the
discussions within the working groups. (These discussion are largely in email and to a
smaller part on the phone and in face-to-face meetings.)

Group communication and collective decision taking in various settings are
traditionally
studied using much more limited written information such as transcripts and records of
attendance and voting, see e.g. As in the case with emails Gloor uses the headers of messages
to automatically re-create the discussion networks of the working group.1 The main technical
contribution of Gloor is a dynamic visualization of the discussion network that allows to
quickly identify the moments when key discussions take place that activate the entire group
and not just a few select members. Gloor also performs a comparative study across the
various groups based on
the structures that emerge over time.

Although it has not been part of this work, it would be even possible to extend such
studies with an analysis of the role of networks in the decision making process as voting
records that are also available in electronic formats. Further, by applying emotion mining
techniques from AI to the contents of the email messages one could recover agreements and
disagreements among committee members. Marking up the data set manually with this kind
of information is almost impossible: a single working group produces over ten thousand
emails during the course of its work.

Blogs and online communities
While blogs are often considered as “personal publishing” or a “digital diary”, bloggers
themselves know that blogs are much more than that: modern blogging tools allow easily
commenting and reacting to the comments of other bloggers, resulting in webs of
communication among bloggers. These discussion networks also lead to the establishment of
dynamic communities, which often manifest themselves through syndicated blogs
(aggregated blogs that collect posts from a set of authors blogging on similar topics), blog
rolls (lists of discussion partners on a personal blog) and even result in real world meetings
such as the Blog Walk series of meetings. Figure shows some of the features of blogs that
have been used in various studies to establish the networks of bloggers.

Figure: Features of blogs that can be used for social network extraction. Note also that
unlike web pages in general blog entries are time stamped, which allows studying network
dynamics, e.g. the spread of information in online communities.

Blogs make a particularly appealing research target due to the availability of
structured electronic data in the form of RSS feeds. RSS feeds contain the text of the blog
posts as well as valuable metadata such as the timestamp of posts, which is the basis of
dynamic analysis.

The 2004 US election campaign represented a turning point in blog research as it has
been the first major electoral contest where blogs have been exploited as a method of
building networks among individual activists and supporters. Blog analysis has suddenly shed
its image as relevant only to marketers interested in understanding product choices of young
demographics; following this campaign there has been explosion in research on the capacity
of web logs for creating and maintaining stable, long distance social networks of different
kinds. Since 2004, blog networks have been the object of study for a number of papers in the
blog research track of the yearly Sunbelt social networks conference.

Online community spaces and social networking services such as MySpace, Live
Journal cater to socialization even more directly than blogs with features such as social
networking (maintaining lists of friends, joining groups), messaging and photo sharing. As
they are typically used by a much younger demographic they offer an excellent opportunity
for studying changes in youth culture. Paolillo, Mercure and Wright offer a characterization
of the Live Journal community based on the electronic data that the website exposes about
the interests and social networks of its users. Backstrom et al. also study the Live Journal data
in order to answer questions regarding the influence of certain structural properties on
community formation and community growth, while also examining how changes in the
membership of communities relates to (changes in) the underlying discussion topics. These
studies are good examples of how directly available electronic data enables the longitudinal
analysis of large communities (more than 10,000 users). Similar to our work in Chapter 8
these studies also go beyond investigating purely structural network properties: in posing

their questions they build on the possibility to access additional information about

user interests.
Live Journal exposes data for research purposes in a semantic format, but

unfortunately this is the exception rather than the norm. Most online social networking
services (Friendster, Orkut, LinkedIn and their sakes) closely guard their data even from their
own users. (Unless otherwise stated these data provided to an online service belongs to the
user. However, most of these services impose terms of use that limit the rights of their users.)
A technological alternative to these centralized services is the FOAF network. FOAF profiles
are stored on the web site of the users and linked together using hyperlinks. The drawback of
FOAF is that at the moment there is a lack of tools for creating and maintaining profiles as
well as useful services for exploiting this network. Nevertheless, a few preliminary studies
have already established that the FOAF network exhibits similar characteristics to other
online social networks

 Web-based networks
The content of Web pages is the most inexhaustible source of information for social network
analysis. This content is not only vast, diverse and free to access but also in many cases more
up to date than any specialized database. On the downside, the quality of information varies
significantly and reusing it for network analysis poses significant technical challenges.
Further, while web content is freely accessible in principle, in practice web mining requires
efficient search that at the moment only commercial search engines provide.

There are two features of web pages that are considered as the basis of extracting
social relations: links and co-occurrences. The linking structure of the Web is considered as
proxy for real world relationships as links are chosen by the author of the page and connect to
other information sources that are considered authoritative and relevant enough to be
mentioned. The biggest drawback of this approach is that such direct links between personal
pages are very sparse: due to the increasing size of the Web searching has taken over
browsing as the primary mode of navigation on the Web. As a result, most individuals put
little effort in creating new links and updating link targets or have given up linking to other
personal pages altogether.

For this reason most social studies based on the linking structure of the web are looking at
relationships at higher levels of aggregation. For example, members of the EICSTES project
investigate the web connectivity of entire scientific institutions for the purposes of web
metrics or web-based scientometrics in the EICSTES project. For example, Heimeriks,
H¨orlesberger and Van den Besselaar compare communication and collaboration networks
across different fields of research using a multi-layered approach. The data for this analysis
comes from bibliographic records, project databases and hyperlink networks. The
connections for the latter are collected by crawling the websites of the institutions involved.
In principle it could be possible to extract more fine-grained networks from the homepages of
the individual researchers. However, links between homepages are too sparse to be analyzed
on their own and automating this task would also require solving what is known as the home
page search problem: locating the homepage of individuals given their name and description.

Co-occurrences of names in web pages can also be taken as evidence of relationships
and are a more frequent phenomenon. On the other hand, extracting relationships based on
co-occurrence of the names of individuals or institutions requires web mining as names are
typically embedded in the natural text of web pages. (Web mining is the application of text

mining to the content of web pages.) The techniques employed here are statistical

methods possibly combined with an analysis of the contents of web pages.
Web mining has been first tested for social network extraction from the Web in the

work of Kautz el al. on the Referral Web project in the mid-90s. The goal of Kautz et al. was
not to perform sociological experiments but to build a tool for automating what he calls
referral chaining: looking for experts with a given expertise, who are close to the user of the
system, i.e. experts who can be accessed through a chain of referrals. An example of a
question that could be asked to the system is “show me all experts on simulated annealing
who are at most three steps away from me in the network.”

As the authors were researchers themselves, they were primarily interested in solving
the referral chaining problem in the scientific domain where finding experts on a given topic
is a common problem in organizing peer-reviews. The Referral Web system was
bootstrapped with the names of famous AI researchers. The system extracted connections
between them through co-occurrence analysis. Using the search engine AltaVista the system
collected page counts for the individual names as well as the number of pages where the
names co-occurred. Note that this corresponds to a very shallow parsing of the web page as
indirect references are not counted this way (e.g. the term “the president of the United States”
will not be associated with George Bush even if he was mentioned as the president elsewhere
in the text.)

Tie strength was calculated by dividing the number of co-occurrences with the
number of pages returned for the two names individually. Also known as the Jaccard-
coefficient, this is basically the ratio of the sizes of two sets: the intersection of the sets of
pages and their union. The resulting value of tie strength is a number between zero (no co-
occurrences) and one (no separate mentioning, only co-occurrences). If this number has
exceeded a certain fixed threshold it was taken as evidence for the existence of a tie.

Although Kautz makes no mention of it we can assume that he also filtered ties also
based on support, i.e. the number of pages that can be found for the given individuals or
combination of individuals. The reason is that the Jaccard-coefficient is a

Figure: The Jaccard-coefficient is the ratio of the intersection and the union of two sets. In
the case of co-occurrence analysis the two sets contain the pages where the individual names
occur. The intersection is formed by the pages where both names appear.

Relative measure of co-occurrence and it does not take into account the absolute sizes
of the sets. In case the absolute sizes are very low we can easily get spurious results: for
example, if two names only occur once on the Web and they occur on the same page, their
co-efficient will be one. However, in this case the absolute sizes are too low to take this as an
evidence for a tie.

The expertise of individuals was extracted by looking for capitalized phrases that
appeared in documents returned by the search engine that were not proper names. The

network in the system has grown two ways. Firstly, the documents from the Web

were searched for new names using proper name extraction, a fairly reliable NLP technique.
These names were then used to extract new names, a process that was repeated two or three
times. Second, users of the system were also allowed to register themselves.

Kautz never evaluated his system in the sense of asking whether the networks he
extracted are an accurate reflection of real world networks. He notes that the system as a
recommender system performed well on both the research domain and in the corporate
setting, although “the recommendations made by recommender system tend to be either
astonishingly accurate or absolutely ridiculous true for any AI-complete problem”. However,
he suggest that the system is able to keep the trust of the user provided that it is made
transparent. For example, the system can show the evidence on which the recommendation is
based and indicate the level of confidence in its decisions. With respect to the corporate
setting Kautz also notes that the results in principle can be better than using the official
corporate records for locating experts as personal pages are often more up-to-date. In the
scientific setting such records are non-existent and even if there existed a central system
where experts can describe their social networks and expertise it would be just as likely to
become obsolete on the long term as corporate yellow pages are.

In our work we use the basic method of Kautz in a slightly different way. Since our
goal is the extraction of social networks we are given a list of names to begin with. We
consult the search engine for investigating the possible tie between all pairs of names. Note
that the number of queries required grows quadratically with the number of names, which is
not only costly in terms of time but is limited by the number of queries that search engines
allow. While this is not a problem in our case study, optimizations are required for larger
scale analysis. A solution is proposed by Matsuo et al. who recreate the original method of
Kautz by first extracting possible contacts from the results returned by the search engine for
the individual names. This significantly reduces the number of queries that need to be made
to the search engine at a minimal loss.

We also experiment with different measures of co-occurrence. A disadvantage of the
Jaccard-coefficient is that it penalizes ties between an individual whose name often occurs on
the Web and less popular individuals. In the science domain this makes it hard to detect, for
example, the ties between famous professors and their PhD students. In this case while the
name of the professor is likely to occur on a large percentage of the pages of where the name
of the PhD student occurs but not vice versa. For this reason we use an asymmetric variant of
the coefficient. In particular, we divide the number of pages for the individual with the
number of pages for both names and take it as evidence of a directed tie if this number
reaches a certain threshold.

Figure: The Jaccard-coefficient does not show a correlation in cases where there is a
significant difference in the sizes of the two sets such as in the case of a student and a
professor.

Second, we associate researchers with topics in a slightly different way. In our study

of the Semantic Web community, the task is to associate scientists with research topics that
have been collected manually from the proceedings of ISWC conference series. The system
calculates the strength of association between the name of a given person and a certain topic.
This strength is determined by taking the number of the pages where the name of an interest
and the name of a person co-occur divided by the total number of pages about the person. We
assign the expertise to an individual if this value is at least one standard deviation higher than
the mean of the values obtained for the same concept. We also borrow from the work of
Mustache and Quan Haase, who perform network analysis based on bibliographic records
that contain keywords of publications. Before applying an analysis of the social-cognitive
network of co-authors, the authors cluster keywords into themes based on the cooccurrences
of keywords on publications, assign documents to themes and subsequently determine which
themes are relevant for a person based on his or her publications. We also perform a simple
clustering of keywords based on their co-occurrences among the interests of researchers.

Kautz already notes that the biggest technical challenge in social network mining is
the disambiguation of person names. Persons names exhibit the same problems of polysemy
and synonymy that we have seen in the general case of web search. Queries for researchers
who commonly use different variations of their name or whose names contain international
characters may return only a partial set of all relevant documents known to the search
engine. Queries for persons with common names such as Martin Frank or Li Ding return
pages about all persons with the same name. Another problem is that the coverage of the Web
can be very skewed: for example, George Bush the president is over-represented compared to
George Bush the beer brewer. Not only statistical methods suffer, but also content analysis as
in this case the top pages returned by the search engine may not even mention the beer
brewer. This is a typical web scale problem: such name collisions are rare in even the largest
of corporate settings but a common phenomenon on the Web.

There have been several approaches to deal with name ambiguity. Bekkerman and
McCallum deal with this problem by using limited background knowledge: instead of a
single name they assume to have a list of names related to each other. They disambiguate the
appearances by clustering the combined results returned by the search engine for the
individual names. The clustering can be based on various networks between the returned
WebPages, e.g. based on hyperlinks between the pages, common links or similarity in
content. Bollegala, Matsuo and Ishizuka also apply clustering based on the content similarity
but go a step further in mining the resulting clusters for key phrases. The idea is that such key
phrases can be added to the search query to reduce the set of results to those related to the
given target individual. For example, when searching for George Bush the beer brewer one
would add the term beer to the query.

In our work in extracting information about the Semantic Web community we also
add a disambiguation term our queries. We use a fixed disambiguation term (Semantic Web
OR ontology) instead of a different disambiguation term for every name. This is a safe (and
even desirable) limitation of the query as we are only interested in relations in the Semantic
Web context. The method of Bollegala et al. would likely suggest more specific key phrases
for every individual and that would increase the precision of our queries, but likely result in
much lower recall.

We also experiment with a second method based on the concept of average precision.
When computing the weight of a directed link between two persons we consider an ordered
list of pages for the first person and a set of pages for the second (the relevant set) as shown

in Figure above. In practice, we ask the search engine for the top N pages for both

persons but in the case of the second person the order is irrelevant for the computation. Let’s
define rel(n) as the relevance at position n, where rel(n) is 1 if the document at position n is
the relevant set and zero otherwise (1 ≤ n ≤ N). Let P(n) denote the precision at position n:

The average precision method is more sophisticated in that it takes into account the
order in which the search engine returns document for a person: it assumes that names of
other persons that occur closer to the top of the list represent more important contacts than
names that occur in pages at the bottom of the list. The method is also more scalable as it
requires only to download the list of top ranking pages once or each author. The drawback of
this method is that most search engines limit the number of pages returned to at most a
thousand. In case a person and his contacts have significantly more pages than that it is likely
that some of the pages for some the alters will not occur among the top ranking pages.

Lastly, we would note that one may reasonably argue against the above methods on
the basis that a single link or co-occurrence is hardly evidence for any relationship. In fact,
not all links are equally important nor every co-occurrence is intended. For example, it may
very well happen that two names co-occur on a web page without much meaning to it. What
is important to realize about these methods is that they are statistical and assume that the
effects of uneven weights and spurious occurrences disappear by means of large numbers.

Figure: The average precision method considers also the position of the pages related to a
second person in the list of results for the first person.

 Building Semantic Web applications with social network features
In the following we first sketch the shared design of most current Semantic Web application.
This will help us to pinpoint the focus of Semantic Web application development, and the
role of triple stores and ontology APIs.

Next, we introduce Sesame, a general database for the storing and querying RDF data.
Along with and the commercial offerings of, Sesame is one of the most popular triple stores
among developers, appreciated in particular for its performance. Sesame has been developed
by Aduna, but available as open source.

Next, we describe the Elmo API, a general purpose ontology API for Sesame. Elmo
allows manipulating RDF/OWL data at the level of domain concepts, with specific tools for
collecting and aggregating RDF data from distributed, heterogeneous information sources.

Elmo has been developed in part by the author and is available under the same

conditions as Sesame, using the same website.
Lastly, we introduce a simple utility called Graph Util which facilitates reading FOAF

data into the graph object model of the Java Universal Network Graph (JUNG) API. Graph
Util is open source and available as part of Flink.

The generic architecture of Semantic Web applications
As the history of submissions to the Semantic Web challenge attest, Semantic Web
applications have been developed in the past years in a wide range of domains from cultural
heritage to medicine, from music retrieval to e-science. Yet, almost all share a generic
architecture as shown in. By the definition above, all Semantic Web applications are mashups
in that they build on a number of heterogeneous data sources and services under diverse
ownership or control.

Before external, heterogeneous data sources can be reused, they need to be
normalized syntactically as well as semantically. The first refers to transforming data into
RDF syntax such as RDF/XML, while the latter means that the ontology’s of the data sources
need to be reconciled. Needless to say, the first step can be skipped if the data is exposed as
an RDF or OWL document, or can be queried dynamically using the SPARQL query
language and protocol.

Figure: The generic design of Semantic Web applications using Sesame and Elmo.
Developing with other triple stores results in similar architectures, but in general application
code is not portable among triple stores due to proprietary APIs.

Most current Semantic Web applications are based on a fixed, small number of data
sources selected by the application developer. In this case, the schemas of the data sources
are known in advance and their mapping can be performed manually. In the future, it is
expected that Semantic Web applications will be able to discover and select new data sources
and map them automatically.

Semantic Web applications persist information in ontology stores, databases

specifically designed for the storage, manipulation and querying of RDF/OWL data.
Ontology stores are almost always equipped with a reasoned or can be connected to an
external reasoning service. Reasoning is used to infer new information based on the asserted
facts or to check the existing information for consistency. Some triple stores also allow
defining custom rules that are evaluated by the reasoned along with the rules prescribed by
the ontology language itself. As we have discussed in Chapter 5, the task of instance
unification can also be partly solved by OWL DL or rule-based reasoning. Reasoning can
take place either when the data is added to a repository (forward-chaining) or at query time
(backward-chaining).

Most Semantic Web applications have a web interface for querying and visualization
and thus considered by all as web applications. However, this is not a requirement: Semantic
Web applications may have a rich client interface or other forms of access. More importantly,
Semantic Web applications are expected to expose data in the same way they expect to
consume the data of other applications: using the standard languages and protocols of the
Semantic Web, and conforming to the architectural style of the Web in general8 In order to
facilitate this, most triple stores implement the SPARQL query language and protocol and
some also implement REST9 style interfaces. A SPARQL service allows other applications
to query the triple store, but it provides no data manipulation features such as adding or
removing data. Therefore most triple stores also provide custom web interfaces for data
manipulation. A Semantic Web application may also expose data or services at higher levels
of abstraction than the level of triples, i.e. on the level of domain objects and operations that
can be executed on them.

As one would assume, the application logic of Semantic Web applications is placed
between the triple store and the eventual web interface. The application normally accesses the
triple store through its client API. When working with the API of the triple store, the
programmer manipulates the data at the level of RDF triples, i.e. the basic operations are
adding and removing triples. Queries are given as a combination of triple patterns and return
a table as a result. This is similar to accessing a relational database. Its notable, however, that
at the current stage of developments applications can only access triple stores through
proprietary APIs or the above mentioned SPARQL protocol, which provides limited, read-
only access and is only suitable for accessing remote data sources. In other words, what is
lacking is an equivalent of the ODBC and JDBC protocols for relational databases. This
means that without additional abstraction layers, all application code is specific to a particular
triple store.

Further, in most cases it is desirable to access a triple store on an ontological level, i.e.
at the level of classes, instances and their properties. This is also the natural level of
manipulating data in object-oriented frameworks. The Elmo library to be introduced
facilitates this by providing access to the data in the triple store through Java classes that map
the ontological data in the triple store. Setting and reading attributes on the instances of these
classes result in adding and removing the corresponding triples in the data store.

Elmo is a set of interfaces that have been implemented for the specific case of
working with data in Sesame triple stores. Sesame is one of the most popular RDF triple
stores and it is to be introduced next. We note that the Elmo interfaces can be implemented
for other, Java-based triples stores such as Jena. Interfacing with non-Java triple stores would
require an agreement on standard protocols similar to JDBC.

 Sesame
Sesame is a triple store implemented using Java technology. Much like a database for RDF
data, Sesame allows creating repositories and specifying access privileges, storing RDF data
in a repository and querying the data using any of the supported query languages. In the case
of Sesame, these include Sesame’s own SeRQL language and SPARQL. (While SPARQL
has the advantage in terms of standardization, it is also minimal by design; SeRQL is a more
expressive query language with many useful features.) The data in the repository can be
manipulated on the level of triples: individual statements can be added and removed from the
repository. (There is no direct update operation. Updates can be carried out by removing and
then adding a statement.) RDF data can be added or extracted in any of the supported RDF
representations including the RDF/XML and Turtle languages introduced in Sesame can
persistently store and retrieve the data from a variety of back-ends: data can persist in
memory, on the disk or in a relational database.

As most RDF repositories, Sesame is not only a data store but also integrates
reasoning. Sesame has a built-in inference for applying the RDF(S) inference rules. While
Sesame does not support OWL semantics, it does have a rule language that allows capturing
most of the semantics of OWL, including the notion of inverse-functional properties and the
semantics of the owl: same As relationship. Reasoning can be enabled or disabled for specific
repositories. When enabled, reasoning is performed at the time when data is added to the
repository or when it is removed

An important, recently added feature of Sesame is the ability to store and retrieve
context information. In distributed scenarios, it is often necessary to capture metadata about
statements. For example, in the case of collecting FOAF profiles from the Web, we might
want to keep track of where the information came from and the time it was last crawled.
Context information is important even for centralized sites with user contributed content. In
previous versions of Sesame, the only possibility to store context information was to
represent it using the reification mechanism of RDF, which is very inefficient. Starting from
Sesame 2.0, the repository natively supports the storage and querying of context information.
In effect, every triple becomes a quad, with the last attribute identifying the context. Contexts
are identified by resources, which can be used in statements as all other resources. Contexts
can also be directly queried using the SPARQL query language supported by this version of
Sesame.

The above mentioned functionalities of Sesame can be accessed in three ways. First,
Sesame provides an HTML interface that can be accessed through a browser. Second, a set of
servlets exposes functionality for remote access through HTTP, SOAP and RMI. Lastly,
Sesame provides a Java client library for developers which exposes all the above mentioned
functionality of a Sesame repository using method calls on a Java object called Sesame
Repository. This object can provide access to both local Sesame servers or and remote servers
running in a different JVM as the application or on a remote machine.

Working with the Sesame client API is relatively straightforward. Queries, for
example, an be executed by calling the evaluateTableQuery method of this class, passing on
the query itself and the identifier of the query language. The result is another object
(QueryResultsTable) which contains the result set in the form of a table much like the one
shown in the web interface (see Figures 6.2 and 6.3). Every row is a result and every column
contains the value for a given variable. The values in the table are objects of type URI, BNode
or Literal, the object representations of the same notions in RDF. For example, one may call

the getValue, getDatatype and getLanguage methods of Literal to get the String

representation of the literal, its
datatype and its language.

Sesame’s client library is appropriate for manipulating RDF data at the level of
individual triples. Object-oriented applications, however, manipulate data at the level of
objects and their attributes; and while objects are characterized by a set of attributes and their
values, individual triples capture only a single value for a single property. Updating an
attribute of an object may translate to updating several triples. Similarly, removing an object,
results in the removal of a number of triples.

Figure: Adding data to a Sesame repository using the web interface.

There is thus a need for an API that can translate between operations on objects and the
underlying triple representation. This is one of the main concerns of the Elmo API.

 Elmo
Elmo is a development toolkit consisting of two main components. The first one is the Elmo
API, providing the above mentioned interface between a set of JavaBeans representing
ontological classes and the underlying triple store containing the data that is manipulated
through the JavaBeans. The API also includes the tool for generating JavaBeans from
ontologies and vice versa. The second main component consists of a set of tools for working
with RDF data, including an RDF crawler and a framework of smushers (instance unification
methods).

Figure : Querying data through the web interface of Sesame.

The Elmo API
The core of the Elmo API is the ElmoManager a JavaBean pool implementation that is
responsible for creating, loading, renaming and removing ElmoBeans. ElmoBeans are a
composition of concepts and behaviors. Concepts are Java interfaces that correspond one-to-

one to a particular ontological class and provide getter and setter methods corresponding to
the properties of the ontological class. (The mapping is maintained using annotations on the
interface.) The inheritance hierarchy of the ontological classes is mapped directly to the
inheritance hierarchy of concepts. Elmo concepts are typically generated using a code-
generator.

Instances of ElmoBeans correspond to instances of the data set. As resources in
ontology may have multiple types, ElmoBeans themselves need to be composed of multiple
concepts. ElmoBeans implement particular combinations of concept interfaces. Note that it is
necessary to generate separate classes for every particular combination of types that are
occurring in the data set, because its not possible in Java for an instance to belong to multiple
classes. ElmoBeans can be generated runtime as the types of resources may change during
the run-time of the application.

ElmoBeans may also implement behaviors. Behaviors are concrete or abstract classes
that can be used to give particular implementations of the methods of a concept (in case the
behavior should differ from the default behavior), but can also be used to add additional
functionality. Behaviors can be mixed-in to ElmoBeans the same way that additional types
can be added runtime.

The separation of concepts and behaviors, and the ability to compose them at will
support the distributed application development, which is the typical scenario in case of Web
applications.
As a separate package, Elmo also provides ElmoBean representations for the most
popularWeb ontologies, including FOAF, RSS 1.0 and Dublin Core. For example, in the
FOAF model there is Person JavaBean with the properties of foaf :Person. Getting and
setting these properties manipulates the underlying RDF data. This higher level of
representation significantly simplifies development. Creating and writing out a FOAF profile
in Elmo.For example, a simple FOAF profile can be created in ten lines of Java code

Repository repository = new SailRepository(new MemoryStore());
repository.initialize();
SesameManagerFactory factory =
new SesameManagerFactory(repository);
ElmoManager manager = factory.createElmoManager();
QName jackID = new QName("http://www.example.org#","jack");
Person jack = manager.createBean(jackID, Person.class);
jack.getFoafFirstName().add("Jack");
System.out.println(jack.getFoafFirstNames());
As we see in this example, after creating the repository all the interaction with the contents of
the repository is encapsulated by the ElmoManager class, which is used to load and
instantiate the JavaBean. After setting some of the properties of the Person instance, we write
it out as an RDF/XML document.

An additional module of the Elmo API, the AugurRepository, can be used to improve
the performance of applications through (predictive) caching. Information read from the
repository is cached for further queries. Caching also involves predicting the kind of queries
the user is likely to ask and pre-loading the information accordingly. Already when a
resource is first accessed all the properties of that resource are preloaded. Another strategy
requires keeping track of the queries from which resources have been retrieved. If later a
property is read on such a resource, the same property is retrieved for all the resources

originating from the same query. for example, when executing the getName method

on a Person instance not only the names of current instance is returned, but also all the names
of all instances that are owl:sameAs the current instance.

Lastly, Elmo helps developers to design applications that are robust against incorrect
data, which is a common problem when designing for the Web. In general, Semantic Web
applications processing external data typically have few guarantees for the correctness of the
input. In particular, many of the RDF documents on the Web especially documents written by
hand, are either syntactically incorrect, semantically inconsistent or violate some of the
assumptions about the usage of the vocabularies involved. Most of these problems result from
human error. For example, many users of FOAF mistakenly assume that the value of the foaf
:mbox property should be a Literal. In reality, the ontology expects a URI that encodes the
email address using the mailto protocol, e.g. mailto:pmika@cs.vu.nl.

Syntax can be easily checked by syntax validators such as the online RDF validation
service of theW3C1112 Inconsistency can be checked by OWL DL reasoners. Elmo provides
solutions for performing checks that can only be carried out programmatically, for example
checking if the value of the foaf :mbox property begins with the mailto: prefix (protocol
identifier). (The mistake of using a Literal would also be found by an OWL DL reasoner,
because the foaf :mbox property is declared to be an owl:ObjectProperty.)

Using aspect-oriented programming, interceptors can be added to setter methods of
JavaBeans in order to validate information that is being inserted to the repository. On the
other hand, validators can be written for checking existing data for correctness. It is the
choice of the programmer whether to stop processing when such check fail, or rather try to
recover, for example by removing or correcting erroneous data.
Elmo tools
Elmo also contains a number of tools to work with RDF data. The Elmo scutter is a generic
RDF crawler that follows rdfs:seeAlso links in RDF documents, which typically point to
other relevant RDF sources on the web. RDF(S) seeAlso links are also the mechanism used to
connect FOAF profiles and thus (given a starting location) the scutter allows to collect FOAF
profiles from the Web.

Several advanced features are provided to support this scenario:
• Blacklisting: sites that produce FOAF profiles in large quantities are automatically placed
on a blacklist. This is to avoid collecting large amounts of uninteresting FOAF data produced
by social networking and blogging services or other dynamic sources.
• Whitelisting: the crawler can be limited to a domain.
• Metadata: the crawler can optionally store metadata about the collected statements. This
metadata currently includes provenance (what URL was the information coming from) and
timestamp • Filtering: incoming statements can be filtered individually. This is useful to
remove unnecessary information, such as statements from unknown namespaces.
• Persistence: when the scutter is stopped, it saves its state to the disk. This allows to continue
scuttering from the point where it left off. Also, when starting the scutter it tries to load back
the list of visited URLs from the repository (this requires the saving of metadata to be turned
on).
• Preloading from Google: the scutter queue can be preloaded by searching for FOAF files
using Google
• Logging: The Scutter uses Simple Logging Facade for Java to provide a detailed logging of
the crawler.

The task of the Elmo smusher is to find equivalent instances in large sets of data. This

is a particularly common problem when processing collections of FOAF profiles as several
sources on the Web may describe the same individual using different identifiers or blank
nodes.

Elmo provides two kinds of smushers that implement strategies to smushing. The first
kind of smusher uses class-specific comparators for comparing instances. Implementations
are given for comparing foaf :Person objects based on name, email addresses and other
identifying properties. There is also a comparator for comparing publications based on a
combination of properties.

The second kind of smusher compares instances in a repository based on a certain
property, i.e. in this case smushing proceeds property-by-property instead of instance-by-
instance. For example, inferring equality based on inverse functional properties can be done
with a single query for all such properties:
CONSTRUCT {x} owl:sameAs {y} FROM
{prop} rdf:type {owl:InverseFunctionalProperty},
{x} prop {v}, {y} prop {v}
USING NAMESPACE
foaf = <http://xmlns.com/foaf/0.1/>,
example = <http://www.example.org/>,
owl = <http://www.w3.org/2002/07/owl#>

When resolving such a CONSTRUCT query first the graph pattern described after the
FROM keyword is matched against the repository and for every occurrence the variables are
bound to actual values. With these bindings a set of new graphs is constructed by filling the
variables in the pattern described in front of the FROM keyword. These graphs are merged
and returned in a single RDF document. Notice that the query will also infer owl:sameAs
relations where x = y, although only for instances that do have at least one value specified for
at least one inverse functional property. This can be prevented by adding an
additionalWHERE clause.

The smushers report the results by calling methods on registered listeners. We provide
several implementations of the listener interface, for example to write out the results in
HTML, or to represent matches using the owl:sameAs relationship and upload such
statements to a Sesame repository.

Smushers can also be used as a wrapper. The difference between a wrapper and a
smusher is that a smusher finds equivalent instances in a single repository, while a wrapper
compares instances in a source repository to instances in a target repository. If a match is
found, the results are lifted from the source repository to the target repository. This
component is typically useful when importing information into a specific repository about a
certain set of instances from a much larger, general store.

 GraphUtil
GraphUtil is a simple utility that facilitates reading FOAF data into the graph object model of
the Java Universal Network Graph API. GraphUtil can be configured by providing two
different queries that define the nodes and edges in the RDF data. These queries thus specify
how to read a graph from the data. For FOAF data, the first query is typically one that returns
the foaf :Person instances in the repository, while the second one returns foaf :knows relations
between them. However, any other graph structure that can be defined through queries (views
on the data) can be read into a graph.

JUNG16 is a Java library that provides an object-oriented representation of different

types of graphs JUNG also contains implementations for the most well known graph
algorithms such as Dijkstra’s shortest path. Various implementations of the Ranker interface
allow computing various social network measures such as the different variations of
centrality described. We extended this framework with a new type of ranker called
PermanentNodeRanker which makes it possible to store and retrieve node rankings in an
RDF store.

Lastly, JUNG provides a customizable visualization framework for displaying graphs.
Most importantly, the framework let’s the developer choose the kind of layout algorithm to
be used and allows for defining interaction with the graph visualization (clicking nodes and
edges, drag-and-drop etc.) The visualization component can be used also in applets as is the
case in Flink and open academia.

Module Wise Important Questions

Module-I

1. Discuss about the information age.
2. Discuss about the Intelligent Web Applications.

3. Discuss about the limitations of today’s web.
4. Explain about the next generation web.

5. Explain about Inference Engine.

6. Explain about the Semantic road map.

7. What are the advantages of Machine Intelligence?

8. What are the advantages of Berners-Lee WWW?

Module-II

1. Discuss about the ontology’s languages for the semantic web.

2. Discuss about the importance of Resource description framework.

3. Define Ontology and discuss about their role in the semantic web.
4. Discuss about the ontology web language.

5. Explain about xml scheme.

6. Explain UML.

7. Discuss in detail about OWL.

8. Write a short note on RDF scheme.

Module-III

1. Explain about various Ontology methods.

2. Discuss about the ontology development tools.

3. Discuss about the ontology sharing and merging.
4. Discuss about the ontology libraries and mapping.

5. Discuss about Logic, Rule, and Inference Engines.

6. Explain about Semantic web applications and services.

7. Discuss about XML base web services.

Module-IV

1. Explain the procedure of creating an OWL –S Ontology for web services.
2. Explain about Semantic search Technology.
3. Write a short note on Web search agents and Semantic methods.
4. Write a short note on Semantic Bioinformatics and Knowledge base.

5. Explain about OWL-S.
6. Explain about Semantic web applications and services.
7. Write a short note on Semantic search and e-Learning.

Module-V

1. What are the electronic sources for Network Analysis? Explain.
2. Discuss about electronic discussion networks.
3. Explain about Social Network Analysis.
4. Discuss about the development of Social Network Analysis.
5. Write a short note on Blogs.
6. Discuss about web based networks.
7. Explain the process of building semantic web applications with social network

features.
8. Explain about online communities in detail.

 CSE HOD

